Structural Biology Using Electrons and X-rays

Structural Biology Using Electrons and X-rays PDF

Author: Michael F Moody

Publisher: Academic Press

Published: 2011-03-03

Total Pages: 450

ISBN-13: 9780080919454

DOWNLOAD EBOOK →

Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen’s symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. Emphasis on common principles underlying all diffraction-based methods Thorough grounding in theory requires understanding of only simple algebra Visual representations and explanations of challenging content Mathematical detail offered in short-course form to parallel the text

X-ray Free Electron Lasers

X-ray Free Electron Lasers PDF

Author: Sébastien Boutet

Publisher: Springer

Published: 2018-12-27

Total Pages: 479

ISBN-13: 3030005518

DOWNLOAD EBOOK →

The timely volume describes recent discoveries and method developments that have revolutionized Structural Biology with the advent of X-ray Free Electron Lasers. It provides, for the first time, a comprehensive examination of this cutting-edge technology. It discusses of-the-moment topics such as growth and detection of nanocrystals, Sample Delivery Techniques for serial femtosecond crystallography, data collection methods at XFELs, and more. This book aims to provide the readers with an overview of the new methods that have been recently developed as well as a prospective on new methods under development. It highlights the most important and novel Structural Discoveries made recently with XFELS, contextualized with a big-picture discussion of future developments.

Biomolecular Crystallography

Biomolecular Crystallography PDF

Author: Bernhard Rupp

Publisher: Garland Science

Published: 2009-10-20

Total Pages: 832

ISBN-13: 1134064195

DOWNLOAD EBOOK →

Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery PDF

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-09

Total Pages: 1367

ISBN-13: 1118900502

DOWNLOAD EBOOK →

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins

Mathematical Approaches to Molecular Structural Biology

Mathematical Approaches to Molecular Structural Biology PDF

Author: Subrata Pal

Publisher: Elsevier

Published: 2022-11-19

Total Pages: 311

ISBN-13: 032390663X

DOWNLOAD EBOOK →

Mathematical Approaches to Molecular Structural Biology offers a comprehensive overview of the mathematical foundations behind the study of biomolecular structure. Initial chapters provide an introduction to the mathematics associated with the study of molecular structure, such as vector spaces and matrices, linear systems, matrix decomposition, vector calculus, probability and statistics. The book then moves on to more advanced areas of molecular structural biology based on the mathematical concepts discussed in earlier chapters. Here, key methods such as X-ray crystallography and cryo-electron microscopy are explored, in addition to biomolecular structure dynamics within the context of mathematics and physics. This book equips readers with an understanding of the fundamental principles behind structural biology, providing researchers with a strong groundwork for further investigation in both this and related fields. Includes a detailed introduction to key mathematical principles and their application to molecular structural biology Explores the mathematical underpinnings behind advanced techniques such as X-ray crystallography and Cryo-electron microscopy Features step-by-step protocols that illustrate mathematical and statistical principles for studying molecular structure and dynamics Provides a basis for further investigation into the field of computational molecular biology Includes figures and graphs throughout to visually demonstrate the concepts discussed

Integrative Structural Biology with Hybrid Methods

Integrative Structural Biology with Hybrid Methods PDF

Author: Haruki Nakamura

Publisher: Springer

Published: 2019-01-08

Total Pages: 272

ISBN-13: 9811322007

DOWNLOAD EBOOK →

This book presents a new emerging concept of "Integrative Structural Biology". It covers current trends of the molecular and cellular structural biology, providing new methods to observe, validate, and keep the structural models of the large cellular machines with recent scientific results. Structures of very large macromolecular machines in cells are being determined by combining observations from complementary experimental methods. Thus, this volume presents the each methods such as X-ray crystallography, NMR spectroscopy, 3DEM, small-angle scattering (SAS), FRET, crosslinking, and enables the readers to understand the hybrid methods. This book discusses how those integrative models should be represented, validated and archived. A unique highlight of this book is discussion of the data validation and archive, which are big problems in this filed along with the progress of this field. The researchers in biology will be interested in this book as a guide book for learning the current structure biology, but also those in structure biology may use this book as a comprehensive reference to cover broad topics.

Practical Approaches to Biological Inorganic Chemistry

Practical Approaches to Biological Inorganic Chemistry PDF

Author: Robert R. Crichton

Publisher: Newnes

Published: 2012-12-31

Total Pages: 329

ISBN-13: 0444563598

DOWNLOAD EBOOK →

The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. Many colour illustrations enable easier visualization of molecular mechanisms and structures Worked examples and problems are included to illustrate and test the reader’s understanding of each technique Written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures

Crystals, X-rays and Proteins

Crystals, X-rays and Proteins PDF

Author: Dennis Sherwood

Publisher: Oxford University Press

Published: 2011

Total Pages: 640

ISBN-13: 019955904X

DOWNLOAD EBOOK →

Information derived from X-ray crystal structures of biological molecules allows us to explain their functions in living organisms in extraordinary detail, and to develop drugs to treat disease. This book describes the principles and practice of X-ray diffraction as a key technique at the forefront of new discoveries in biology and medicine.

Electron Density and Bonding in Crystals

Electron Density and Bonding in Crystals PDF

Author: V.G Tsirelson

Publisher: CRC Press

Published: 1996-01-01

Total Pages: 544

ISBN-13: 9780750302845

DOWNLOAD EBOOK →

Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry provides a comprehensive, unified account of the use of diffraction techniques to determine the distribution of electrons in crystals. The book discusses theoretical and practical techniques, the application of electron density studies to chemical bonding, and the determination of the physical properties of condensed matter. The book features the authors' own key contributions to the subject as well a thorough, critical summary of the extensive literature on electron density and bonding. Logically organized, coverage ranges from the theoretical and experimental basis of electron density determination to its impact on investigations of the nature of the chemical bond and its uses in determining electromagnetic and optical properties of crystals. The main text is supplemented by appendices that provide clear, concise guidance on aspects such as systems of units, quantum theory of atomic vibrations, atomic orbitals, and creation and annihilation operators. The result is a valuable compendium of modern knowledge on electron density distributions, making this reference a standard for crystallographers, condensed matter physicists, theoretical chemists, and materials scientists.