Reactive transport modeling of fluid-rock interactions associated with carbonate diagenesis and implications for reservoir quality prediction

Reactive transport modeling of fluid-rock interactions associated with carbonate diagenesis and implications for reservoir quality prediction PDF

Author: Ying Xiong

Publisher: Cuvillier Verlag

Published: 2022-07-26

Total Pages: 197

ISBN-13: 3736966490

DOWNLOAD EBOOK →

Diagenesis research is the foundation of hydrocarbon reservoir characterization and exploration. Reactive transport modeling (RTM) is an emerging approach for diagenesis research, with unique capability of quantification and forward modeling of the coupled thermo-hydro-chemical processes of diagenesis. Using TOUGHREACT simulator, this thesis investigates the two most important fluid-rock interactions in carbonate rocks, i.e., dolomitization and karstification, based on generic model analyses and a case study in the Ordos Basin, China. In particular, this study attempts to quantitatively characterize the diagenetic processes and to reconstruct the diagenesis-porosity evolution of carbonate reservoirs. Some controversies in carbonate diagenesis research, which cannot be well explained by classical geological methods, have also been discussed. The results are helpful to better understand the spatial-temporal distribution and co-evolution of diagenesis-mineral-porosity during the complicated diagenetic processes with their potential controlling factors, and to reduce the uncertainty of reservoir quality prediction.

Reactive Transport Modeling

Reactive Transport Modeling PDF

Author: Yitian Xiao

Publisher: John Wiley & Sons

Published: 2018-03-12

Total Pages: 560

ISBN-13: 111906001X

DOWNLOAD EBOOK →

Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.

Fundamental Controls on Fluid Flow in Carbonates

Fundamental Controls on Fluid Flow in Carbonates PDF

Author: S.M. Agar

Publisher: Geological Society of London

Published: 2015-02-02

Total Pages: 473

ISBN-13: 1862396590

DOWNLOAD EBOOK →

This volume highlights key challenges for fluid-flow prediction in carbonate reservoirs, the approaches currently employed to address these challenges and developments in fundamental science and technology. The papers span methods and case studies that highlight workflows and emerging technologies in the fields of geology, geophysics, petrophysics, reservoir modelling and computer science. Topics include: detailed pore-scale studies that explore fundamental processes and applications of imaging and flow modelling at the pore scale; case studies of diagenetic processes with complementary perspectives from reactive transport modelling; novel methods for rock typing; petrophysical studies that investigate the impact of diagenesis and fault-rock properties on acoustic signatures; mechanical modelling and seismic imaging of faults in carbonate rocks; modelling geological influences on seismic anisotropy; novel approaches to geological modelling; methods to represent key geological details in reservoir simulations and advances in computer visualization, analytics and interactions for geoscience and engineering.

Multi-scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks

Multi-scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks PDF

Author: Fadi Henri Nader

Publisher: Springer

Published: 2016-09-30

Total Pages: 177

ISBN-13: 3319464450

DOWNLOAD EBOOK →

This book is both a review and a look to the future, highlighting challenges for better predicting quantitatively the impact of diagenesis on reservoir rocks. Classical diagenesis studies make use of a wide range of descriptive analytical techniques to explain specific, relatively time-framed fluid-rock interaction processes, and deduce their impacts on reservoir rocks. Future operational workflows will consist of constructing a conceptual diagenesis model, quantifying the related diagenetic phases, and modelling the diagenetic processes. Innovative approaches are emerging for applied quantitative diagenesis, providing numerical data that can be used by reservoir engineers as entry (input) data, and for validating results of numerical simulations. Geometry-based, geostatistical and geochemical modelling do not necessarily mimic natural processes, they rather provide reasonable solutions to specific problems.

Reservoir Quality of Clastic and Carbonate Rocks

Reservoir Quality of Clastic and Carbonate Rocks PDF

Author: P.J. Armitage

Publisher: Geological Society of London

Published: 2018-06-18

Total Pages: 453

ISBN-13: 1786201399

DOWNLOAD EBOOK →

Reservoir quality is studied using a wide range of similar techniques in both sandstones and carbonates. Sandstone and carbonate reservoir quality both benefit from the study of modern analogues and experiments, but modelling approaches are currently quite different for these two types of reservoirs. There are many common controls on sandstone and carbonate reservoir quality, but also distinct differences due primarily to mineralogy. Numerous controversies remain including the question of oil inhibition, the key control on pressure solution and geochemical flux of material to or from reservoirs. This collection of papers contains case-study-based examples of sandstone and carbonate reservoir quality prediction as well as modern analogue, outcrop analogue, modelling and advanced analytical approaches.

Water-Rock Interaction, Two Volume Set

Water-Rock Interaction, Two Volume Set PDF

Author: Richard B. Wanty

Publisher: CRC Press

Published: 2004-09-02

Total Pages: 1711

ISBN-13: 1482284510

DOWNLOAD EBOOK →

The interaction of the lithosphere and hydrosphere sets the boundary conditions for life, as water and the nutrients extracted from rocks are essential to all known life-forms. Water-rock interaction also affects the fate and transport of pollutants, mediates the long-term cycling of fluids and metals in the earth's crust, impacts the migration and

Thermodynamics and Kinetics of Water-Rock Interaction

Thermodynamics and Kinetics of Water-Rock Interaction PDF

Author: Eric H. Oelkers

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 588

ISBN-13: 1501508466

DOWNLOAD EBOOK →

Volume 70 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Thermodynamics and Kinetics of Water-Rock Interaction held prior to the 19th annual V. M. Goldschmidt Conference in Davos, Switzerland (June 19-21, 2009). Contents: Thermodynamic Databases for Water-Rock Interaction Thermodynamics of Solid Solution-Aqueous Solution Systems Mineral Replacement Reactions Thermodynamic Concepts in Modeling Sorption at the Mineral-Water Interface Surface Complexation Modeling: Mineral Fluid Equilbria at the Molecular Scale The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry Organics in Water-Rock Interactions Mineral Precipitation Kinetics Towards an Integrated Model of Weathering, Climate, and Biospheric Processes Approaches to Modeling Weathered Regolith Fluid-Rock Interaction: A Reactive Transport Approach Geochemical Modeling of Reaction Paths and Geochemical Reaction Networks

Fluid-rock Interaction

Fluid-rock Interaction PDF

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the focus of current research, or are either incompletely understood or not fully appreciated. At this point, the focus shifts to a brief discussion of the three major approaches to modeling multi-scale porous media (1) continuum models, (2) pore scale and pore network models, and (3) hybrid or multi-continuum models. From here, the chapter proceeds to investigate some case studies which illuminate the power of modern numerical reactive transport modeling in deciphering fluid-rock interaction.

Carbonate Reservoir Characterization

Carbonate Reservoir Characterization PDF

Author: F. Jerry Lucia

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 3662039850

DOWNLOAD EBOOK →

One main target in petroleum recovery is the description of of the three-dimensional distribution of petrophysical properties on the interwell scale in carbonate reservoirs, in order to improve performance predictions by means of fluid-flow computer simulations The book focuses on the improvement of geological, petrophysical, and geostatistical methods, describes the basic petrophysical properties, important geology parameters, and rock fabrics from cores, and discusses their spatial distribution. A closing chapter deals with reservoir models as an input into flow simulators.