Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Modern Optimization Methods for Decision Making Under Risk and Uncertainty PDF

Author: Alexei A. Gaivoronski

Publisher: CRC Press

Published: 2023-10-06

Total Pages: 388

ISBN-13: 1000983927

DOWNLOAD EBOOK →

The book comprises original articles on topical issues of risk theory, rational decision making, statistical decisions, and control of stochastic systems. The articles are the outcome of a series international projects involving the leading scholars in the field of modern stochastic optimization and decision making. The structure of stochastic optimization solvers is described. The solvers in general implement stochastic quasi-gradient methods for optimization and identification of complex nonlinear models. These models constitute an important methodology for finding optimal decisions under risk and uncertainty. While a large part of current approaches towards optimization under uncertainty stems from linear programming (LP) and often results in large LPs of special structure, stochastic quasi-gradient methods confront nonlinearities directly without need of linearization. This makes them an appropriate tool for solving complex nonlinear problems, concurrent optimization and simulation models, and equilibrium situations of different types, for instance, Nash or Stackelberg equilibrium situations. The solver finds the equilibrium solution when the optimization model describes the system with several actors. The solver is parallelizable, performing several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, and of composite stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. Several complex examples with applications to water resources management, energy markets, pricing of services on social networks are provided. In the case of power system, regulator makes decision on the final expansion plan, considering the strategic behavior of regulated companies and coordinating the interests of different economic entities. Such a plan can be an equilibrium − a planned decision where a company cannot increase its expected gain unilaterally.

Introduction to Optimization-Based Decision-Making

Introduction to Optimization-Based Decision-Making PDF

Author: Joao Luis de Miranda

Publisher: CRC Press

Published: 2021-12-24

Total Pages: 263

ISBN-13: 1351778722

DOWNLOAD EBOOK →

The large and complex challenges the world is facing, the growing prevalence of huge data sets, and the new and developing ways for addressing them (artificial intelligence, data science, machine learning, etc.), means it is increasingly vital that academics and professionals from across disciplines have a basic understanding of the mathematical underpinnings of effective, optimized decision-making. Without it, decision makers risk being overtaken by those who better understand the models and methods, that can best inform strategic and tactical decisions. Introduction to Optimization-Based Decision-Making provides an elementary and self-contained introduction to the basic concepts involved in making decisions in an optimization-based environment. The mathematical level of the text is directed to the post-secondary reader, or university students in the initial years. The prerequisites are therefore minimal, and necessary mathematical tools are provided as needed. This lean approach is complemented with a problem-based orientation and a methodology of generalization/reduction. In this way, the book can be useful for students from STEM fields, economics and enterprise sciences, social sciences and humanities, as well as for the general reader interested in multi/trans-disciplinary approaches. Features Collects and discusses the ideas underpinning decision-making through optimization tools in a simple and straightforward manner Suitable for an undergraduate course in optimization-based decision-making, or as a supplementary resource for courses in operations research and management science Self-contained coverage of traditional and more modern optimization models, while not requiring a previous background in decision theory

Algorithms for Worst-Case Design and Applications to Risk Management

Algorithms for Worst-Case Design and Applications to Risk Management PDF

Author: Berç Rustem

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 405

ISBN-13: 1400825113

DOWNLOAD EBOOK →

Recognizing that robust decision making is vital in risk management, this book provides concepts and algorithms for computing the best decision in view of the worst-case scenario. The main tool used is minimax, which ensures robust policies with guaranteed optimal performance that will improve further if the worst case is not realized. The applications considered are drawn from finance, but the design and algorithms presented are equally applicable to problems of economic policy, engineering design, and other areas of decision making. Critically, worst-case design addresses not only Armageddon-type uncertainty. Indeed, the determination of the worst case becomes nontrivial when faced with numerous--possibly infinite--and reasonably likely rival scenarios. Optimality does not depend on any single scenario but on all the scenarios under consideration. Worst-case optimal decisions provide guaranteed optimal performance for systems operating within the specified scenario range indicating the uncertainty. The noninferiority of minimax solutions--which also offer the possibility of multiple maxima--ensures this optimality. Worst-case design is not intended to necessarily replace expected value optimization when the underlying uncertainty is stochastic. However, wise decision making requires the justification of policies based on expected value optimization in view of the worst-case scenario. Conversely, the cost of the assured performance provided by robust worst-case decision making needs to be evaluated relative to optimal expected values. Written for postgraduate students and researchers engaged in optimization, engineering design, economics, and finance, this book will also be invaluable to practitioners in risk management.

Optimization Methods in Finance

Optimization Methods in Finance PDF

Author: Gerard Cornuejols

Publisher: Cambridge University Press

Published: 2006-12-21

Total Pages: 358

ISBN-13: 9780521861700

DOWNLOAD EBOOK →

Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Introduction to Optimization-Based Decision-Making

Introduction to Optimization-Based Decision-Making PDF

Author: João Luis de Miranda

Publisher: Chapman & Hall/CRC

Published: 2021-12-19

Total Pages: 241

ISBN-13: 9781351778718

DOWNLOAD EBOOK →

The large and complex challenges the world is facing, the growing prevalence of huge data sets, and the new and developing ways for addressing them (artificial intelligence, data science, machine learning, etc.), means it is increasingly vital that academics and professionals from across disciplines have a basic understanding of the mathematical underpinnings of effective, optimized decision-making. Without it, decision makers risk being overtaken by those who better understand the models and methods, that can best inform strategic and tactical decisions. Introduction to Optimization-Based Decision-Making provides an elementary and self-contained introduction to the basic concepts involved in making decisions in an optimization-based environment. The mathematical level of the text is directed to the post-secondary reader, or university students in the initial years. The prerequisites are therefore minimal, and necessary mathematical tools are provided as needed. This lean approach is complemented with a problem-based orientation and a methodology of generalization/reduction. In this way, the book can be useful for students from STEM fields, economics and enterprise sciences, social sciences and humanities, as well as for the general reader interested in multi/trans-disciplinary approaches. Features Collects and discusses the ideas underpinning decision-making through optimization tools in a simple and straightforward manner Suitable for an undergraduate course in optimization-based decision-making, or as a supplementary resource for courses in operations research and management science Self-contained coverage of traditional and more modern optimization models, while not requiring a previous background in decision theory

Multicriteria and Optimization Models for Risk, Reliability, and Maintenance Decision Analysis

Multicriteria and Optimization Models for Risk, Reliability, and Maintenance Decision Analysis PDF

Author: Adiel Teixeira de Almeida

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783030896485

DOWNLOAD EBOOK →

This book considers a broad range of areas from decision making methods applied in the contexts of Risk, Reliability and Maintenance (RRM). Intended primarily as an update of the 2015 book Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis, this edited work provides an integration of applied probability and decision making. Within applied probability, it primarily includes decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In decision making, it includes multicriteria decision making/aiding (MCDM/A) methods and optimization models. Within MCDM, in addition to decision analysis, some of the topics related to mathematical programming areas are considered, such as multiobjective linear programming, multiobjective nonlinear programming, game theory and negotiations, and multiobjective optimization. Methods related to these topics have been applied to the context of RRM. In MCDA, several other methods are considered, such as outranking methods, rough sets and constructive approaches. The book addresses an innovative treatment of decision making in RRM, improving the integration of fundamental concepts from both areas of RRM and decision making. This is accomplished by presenting current research developments in decision making on RRM. Some pitfalls of decision models on practical applications on RRM are discussed and new approaches for overcoming those drawbacks are presented.

Methods of Optimization and Systems Analysis for Problems of Transcomputational Complexity

Methods of Optimization and Systems Analysis for Problems of Transcomputational Complexity PDF

Author: Ivan V. Sergienko

Publisher: Springer Science & Business Media

Published: 2012-07-27

Total Pages: 237

ISBN-13: 1461442117

DOWNLOAD EBOOK →

This work presents lines of investigation and scientific achievements of the Ukrainian school of optimization theory and adjacent disciplines. These include the development of approaches to mathematical theories, methodologies, methods, and application systems for the solution of applied problems in economy, finances, energy saving, agriculture, biology, genetics, environmental protection, hardware and software engineering, information protection, decision making, pattern recognition, self-adapting control of complicated objects, personnel training, etc. The methods developed include sequential analysis of variants, nondifferential optimization, stochastic optimization, discrete optimization, mathematical modeling, econometric modeling, solution of extremum problems on graphs, construction of discrete images and combinatorial recognition, etc. Some of these methods became well known in the world's mathematical community and are now known as classic methods.

Optimization for Decision Making

Optimization for Decision Making PDF

Author: Víctor Yepes

Publisher:

Published: 2020-10-08

Total Pages: 290

ISBN-13: 9783039432202

DOWNLOAD EBOOK →

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled "Optimization for Decision Making". These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions, or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization for decision making in a coherent manner.