MIMO Radar Waveform Design for Spectrum Sharing with Cellular Systems

MIMO Radar Waveform Design for Spectrum Sharing with Cellular Systems PDF

Author: Awais Khawar

Publisher: Springer

Published: 2016-02-13

Total Pages: 69

ISBN-13: 3319297252

DOWNLOAD EBOOK →

This book discusses spectrum sharing between cellular systems and radars. The book addresses a novel way to design radar waveforms that can enable spectrum sharing between radars and communication systems, without causing interference to communication systems, and at the same time achieving radar objectives of target detection, estimation, and tracking. The book includes a MATLAB-based approach, which provides reader with a way to learn, experiment, compare, and build on top of existing algorithms.

Spectrum Sharing Between Radars and Communication Systems

Spectrum Sharing Between Radars and Communication Systems PDF

Author: Awais Khawar

Publisher: Springer

Published: 2017-06-12

Total Pages: 115

ISBN-13: 3319566849

DOWNLOAD EBOOK →

This book presents spectrum sharing efforts between cellular systems and radars. The book addresses coexistence algorithms for radar and communication systems. Topics include radar and cellular system models; spectrum sharing with small radar systems; spectrum sharing with large radar systems; radar spectrum sharing with coordinated multipoint systems (CoMP); and spectrum sharing with overlapped MIMO radars. The primary audience is the radar and wireless communication community, specifically people in industry, academia, and research whose focus is on spectrum sharing. The topics are of interest for both communication and signal processing technical groups. In addition, students can use MATLAB code to enhance their learning experience.

Topics in MIMO Radars

Topics in MIMO Radars PDF

Author: Bo Li

Publisher:

Published: 2016

Total Pages: 173

ISBN-13:

DOWNLOAD EBOOK →

Recently, multiple-input multiple-output (MIMO) radars have received considerable attention due to their superior resolution. A MIMO radar system lends itself to a networked implementation, which is very desirable in both military and civilian applications. In networked radars, the transmit and receive antennas are placed on wireless connected nodes, such as vehicles, ships, airplanes, or even backpacks. The transmit antennas transmit probing waveforms, which impinge on targets and are reflected back. A fusion center collects the target echo measurements of all receive antennas and jointly processes the signals to extract the desired target parameters. This dissertation proposes to address the following two bottleneck issues associated with networked radars. Reliable surveillance requires collection, communication and process of vast amounts of data. This is a power and bandwidth consuming task, which can be especially taxing in scenarios in which the antennas are on battery operated devices and are connected to the fusion center via a wireless link. Sparse sensing techniques are used to substantially reduce the amount of data that need to be communicated to a fusion center, while ensuring high target detection and estimation performance. In the first part, this dissertation derives the theoretical requirements and performance guarantees for the application of compressive sensing to both MIMO radar settings, namely, the collocated MIMO radars and the distributed MIMO radars. Confirming previous simulations based observations, the theoretical results of this thesis show that exploiting the sparsity of the target vector can reduce the amount of measurements needed for successful target estimation. For compressive sensing based distributed MIMO radars, we also propose two low-complexity signal recovery approaches. With the increasing demand of radio spectrum, the operating frequency bands of communication and radar systems often overlap, causing one system to exert interference to the other. Uncoordinated interference from communication systems may significantly harm the tactical radar functionality and vice versa. In the second part, this dissertation studies spectrum sharing between a MIMO communication system and a MIMO radar system in various scenarios. First, a cooperative spectrum sharing framework is proposed for the coexistence of MIMO radars and wireless communications. Radar transmit precoding and adaptive communication transmission are adopted, and are jointly designed to maximize signal-to-interference-plus-noise ratio (SINR) at the radar receiver subject to the communication system meeting certain rate and power constraints. Compared to the non-cooperative approaches in the literature, the proposed approach has the potential to improve the spectrum utilization because it introduces more degrees of freedom. In addition, the proposed spectrum sharing framework considers several practical issues which are not addressed in literature, e.g., the radar pulsed transmit pattern, targets falling in different range bins, and radar systems operating in the presence of clutter. Second, we investigate spectrum sharing between a MIMO communication system and a recently proposed sparse sensing based radar, namely the matrix completion based MIMO radar (MIMO-MC). MIMO-MC radar receivers take sub-Nyquist rate samples, and transfer them to a fusion center where the full data matrix is completed with high accuracy. MIMO-MC radars, in addition to reducing communication bandwidth and power as compared to MIMO radars, offer a significant advantage for spectrum sharing. The advantage stems from the way the sub-sampling scheme at the radar receivers modulates the interference channel from the communication system transmitters, rendering it symbol dependent and reducing its row space. This makes it easier for the communication system to design its waveforms in an adaptive fashion so that it minimizes the interference to the radar subject to meeting rate and power constraints. Two methods are investigated to minimize the effective interference power to the radar receiver: 1) design the communication transmit covariance matrix with fixed the radar sampling scheme, and 2) jointly design the communication transmit covariance matrix and the MIMO-MC radar sampling scheme. Furthermore, we investigate joint transmit precoding for the co-existence of a MIMO-MC radar and a MIMO wireless communication system in the presence of clutter. We show that the error performance of matrix completion in MIMO-MC radars is theoretically guaranteed when precoding is employed. The radar transmit precoder, the radar sub-sampling scheme, and the communication transmit covariance matrix are jointly designed to maximize the radar SINR while meeting certain communication rate and power constraints. Efficient optimization algorithms are provided along with insight on the proposed design problem.

Signal Design for Modern Radar Systems

Signal Design for Modern Radar Systems PDF

Author: Mohammad Alaee-Kerahroodi

Publisher: Artech House

Published: 2022-11-30

Total Pages: 379

ISBN-13: 1630818933

DOWNLOAD EBOOK →

This book gives you a comprehensive overview of key optimization tools that can be used to design radar waveforms and adaptive signal processing strategies under practical constraints -- strategies such as power method-like iterations, coordinate descent, and majorization-minimization – that help you to meet the more and more stressing sensing system requirements. The book walks you through how radar waveform synthesis is obtained as the solution to a constrained optimization problem such as finite energy, unimodularity (or being constant-modulus), and finite or discrete-phase (potentially binary) alphabet, which are dictated by the practical limitations of the real systems. Several approaches in each of these broad frameworks are detailed and various applications of these optimization techniques are described. Focusing on a holistic approach rather than a problem-specific approach, the book shows you what you need to effectively formulate waveform design and understand the flexibility of the framework for adapting to your own specific needs. You’ll have full access to the tools and knowledge you need to design waveform with optimized correlation/cross-correlation properties for SISO/SIMO and MIMO radars, taking into account spectral constraints for cognitive rads, as well as coexistence with communications and mitigate possible Doppler and quantization errors, and more. The book also includes representative software codes that further help you generate the described solutions. With its unique style of covering mathematical results along with their applications from diverse areas, this is a much-needed, detailed handbook for industry researchers, scientists and designers including medical, marine, defense, and automotive companies. It is also an excellent resource for advanced courses on radar signal processing.

Spectrum Sharing

Spectrum Sharing PDF

Author: Constantinos B. Papadias

Publisher: John Wiley & Sons

Published: 2020-03-13

Total Pages: 456

ISBN-13: 1119551471

DOWNLOAD EBOOK →

Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing. Beginning with the historic form of cognitive radio, Spectrum Sharing: The Next Frontier in Wireless Networks continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more. Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA) Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems) Includes substantial trials and experimental results, as well as system-level performance evaluation results Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing Edited by experts in the field, and featuring contributions by respected professionals in the field world wide Spectrum Sharing: The Next Frontier in Wireless Networks is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.

Resource Allocation with Carrier Aggregation in Cellular Networks

Resource Allocation with Carrier Aggregation in Cellular Networks PDF

Author: Haya Shajaiah

Publisher: Springer

Published: 2017-07-05

Total Pages: 210

ISBN-13: 3319605402

DOWNLOAD EBOOK →

This book introduces an efficient resource management approach for future spectrum sharing systems. The book focuses on providing an optimal resource allocation framework based on carrier aggregation to allocate multiple carriers’ resources efficiently among mobile users. Furthermore, it provides an optimal traffic dependent pricing mechanism that could be used by network providers to charge mobile users for the allocated resources. The book provides different resource allocation with carrier aggregation solutions, for different spectrum sharing scenarios, and compares them. The provided solutions consider the diverse quality of experience requirement of multiple applications running on the user’s equipment since different applications require different application performance. In addition, the book addresses the resource allocation problem for spectrum sharing systems that require user discrimination when allocating the network resources.

Integrated Sensing and Communications

Integrated Sensing and Communications PDF

Author: Fan Liu

Publisher: Springer Nature

Published: 2023-07-18

Total Pages: 611

ISBN-13: 9819925010

DOWNLOAD EBOOK →

The coming generations of wireless network technologies will serve, not only as a means of connecting physical and digital environments, but also to set the foundation for an intelligent world in which all aspects are interconnected, sensed, and endowed with intelligence. Beyond merely providing communication capabilities, future networks will have the capacity to "see" and interpret the physical world. This development compels us to re-imagine the design of current communication infrastructures and terminals, taking into account crucial aspects such as fundamental constraints and tradeoffs, information extraction and processing technologies, issues of public security and privacy, as well as the emergence of numerous new applications. This field of research is known as Integrated Sensing and Communications (ISAC), and it has ushered in a paradigm shift towards the omnipresence of radio devices.This book provides the first comprehensive introduction to the ISAC theoretical and practical framework. Each chapter is authored by a group of world-leading experts, including over 10 IEEE Fellows. Readers can expect to gain both a broad overview and detailed technical insights into the latest ISAC innovations.

Signal Processing for Joint Radar Communications

Signal Processing for Joint Radar Communications PDF

Author: Kumar Vijay Mishra

Publisher: John Wiley & Sons

Published: 2024-04-09

Total Pages: 453

ISBN-13: 1119795559

DOWNLOAD EBOOK →

Signal Processing for Joint Radar Communications A one-stop, comprehensive source for the latest research in joint radar communications In Signal Processing for Joint Radar Communications, four eminent electrical engineers deliver a practical and informative contribution to the diffusion of newly developed joint radar communications (JRC) tools into the sensing and communications communities. This book illustrates recent successes in applying modern signal processing theories to core problems in JRC. The book offers new results on algorithms and applications of JRC from diverse perspectives, including waveform design, physical layer processing, privacy, security, hardware prototyping, resource allocation, and sampling theory. The distinguished editors bring together contributions from more than 40 leading JRC researchers working on remote sensing, electromagnetics, optimization, signal processing, and beyond 5G wireless networks. The included resources provide an in-depth mathematical treatment of relevant signal processing tools and computational methods allowing readers to take full advantage of JRC systems. Readers will also find: Thorough introductions to fundamental limits and background on JRC theory and applications, including dual-function radar communications, cooperative JRC, distributed JRC, and passive JRC Comprehensive explorations of JRC processing via waveform analyses, interference mitigation, and modeling with jamming and clutter Practical discussions of information-theoretic, optimization, and networking aspects of JRC In-depth examinations of JRC applications in cutting-edge scenarios including automotive systems, intelligent reflecting surfaces, and secure parameter estimation Perfect for researchers and professionals in the fields of radar, signal processing, communications, information theory, networking, and electronic warfare, Signal Processing for Joint Radar Communications will also earn a place in the libraries of engineers working in the defense, aerospace, wireless communications, and automotive industries.

Cellular Communications Systems in Congested Environments

Cellular Communications Systems in Congested Environments PDF

Author: Mo Ghorbanzadeh

Publisher: Springer

Published: 2016-10-11

Total Pages: 261

ISBN-13: 3319462679

DOWNLOAD EBOOK →

This book presents a mathematical treatment of the radio resource allocation of modern cellular communications systems in contested environments. It focuses on fulfilling the quality of service requirements of the living applications on the user devices, which leverage the cellular system, and with attention to elevating the users’ quality of experience. The authors also address the congestion of the spectrum by allowing sharing with the band incumbents while providing with a quality-of-service-minded resource allocation in the network. The content is of particular interest to telecommunications scheduler experts in industry, communications applications academia, and graduate students whose paramount research deals with resource allocation and quality of service.

Internet of Things, Smart Spaces, and Next Generation Networks and Systems

Internet of Things, Smart Spaces, and Next Generation Networks and Systems PDF

Author: Olga Galinina

Publisher: Springer

Published: 2017-10-03

Total Pages: 783

ISBN-13: 3319673807

DOWNLOAD EBOOK →

This book constitutes the joint refereed proceedings of the 17th International Conference on Next Generation Wired/Wireless Advanced Networks and Systems, NEW2AN 2017, the 10th Conference on Internet of Things and Smart Spaces, ruSMART 2017. The 71 revised full papers presented were carefully reviewed and selected from 202 submissions. The papers of NEW2AN focus on advanced wireless networking and applications; lower-layer communication enablers; novel and innovative approaches to performance and efficiency analysis of ad-hoc and machine-type systems; employed game-theoretical formulations, Markov chain models, and advanced queuing theory; grapheme and other emerging material, photonics and optics; generation and processing of signals; and business aspects. The ruSMART papers deal with fully-customized applications and services. The NsCC Workshop papers capture the current state-of-the-art in the field of molecular a nd nanoscale communications such as information, communication and network theoretical analysis of molecular and nanonetwork, mobility in molecular and nanonetworks; novel and practical communication protocols; routing schemes and architectures; design/engineering/evaluation of molecular and nonoscale communication systems; potential applications and interconnections to the Internet (e.g. the Internet of Nano Things).