Inductance Calculations

Inductance Calculations PDF

Author: Frederick W Grover

Publisher: Courier Corporation

Published: 2013-07-24

Total Pages: 304

ISBN-13: 0486318354

DOWNLOAD EBOOK →

This authoritative reference enables the design of virtually every type of inductor. It features a single simple formula for each type of inductor, together with tables containing essential numerical factors. 1946 edition.

Inductance

Inductance PDF

Author: Clayton R. Paul

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 280

ISBN-13: 1118211286

DOWNLOAD EBOOK →

The only resource devoted Solely to Inductance Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance. Unlike other texts, Inductance provides all the details about the derivations of the inductances of various inductors, as well as: Fills the need for practical knowledge of partial inductance, which is essential to the prediction of power rail collapse and ground bounce problems in high-speed digital systems Provides a needed refresher on the topics of magnetic fields Addresses a missing link: the calculation of the values of the various physical constructions of inductors—both intentional inductors and unintentional inductors—from basic electromagnetic principles and laws Features the detailed derivation of the loop and partial inductances of numerous configurations of current-carrying conductors With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems.

Inductance and Force Calculations in Electrical Circuits

Inductance and Force Calculations in Electrical Circuits PDF

Author: Marcelo de Almeida Bueno

Publisher: Nova Publishers

Published: 2001

Total Pages: 160

ISBN-13: 9781560729174

DOWNLOAD EBOOK →

This book deals with the two fundamental subjects of electromagnetism. It is a useful text for courses in electromagnetism, electrical circuits, mathematical methods of physics, and the history and philosophy of science. It covers how to calculate force between two current carrying circuits, and net force on a part of a closed circuit. The calculation of the mutual inductance between two circuits and self-inductance of a single closed circuit is also described. Experiments explain the main expressions of Ampere and Grassmann. A must to help deepen the knowledge of the mind of any student of science.

On-Chip Inductance in High Speed Integrated Circuits

On-Chip Inductance in High Speed Integrated Circuits PDF

Author: Yehea I. Ismail

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 310

ISBN-13: 1461516854

DOWNLOAD EBOOK →

The appropriate interconnect model has changed several times over the past two decades due to the application of aggressive technology scaling. New, more accurate interconnect models are required to manage the changing physical characteristics of integrated circuits. Currently, RC models are used to analyze high resistance nets while capacitive models are used for less resistive interconnect. However, on-chip inductance is becoming more important with integrated circuits operating at higher frequencies, since the inductive impedance is proportional to the frequency. The operating frequencies of integrated circuits have increased dramatically over the past decade and are expected to maintain the same rate of increase over the next decade, approaching 10 GHz by the year 2012. Also, wide wires are frequently encountered in important global nets, such as clock distribution networks and in upper metal layers, and performance requirements are pushing the introduction of new materials for low resistance interconnect, such as copper interconnect already used in many commercial CMOS technologies. On-Chip Inductance in High Speed Integrated Circuits deals with the design and analysis of integrated circuits with a specific focus on on-chip inductance effects. It has been described throughout this book that inductance can have a tangible effect on current high speed integrated circuits. For example, neglecting inductance and using an RC interconnect model in a production 0.25 mum CMOS technology can cause large errors (over 35%) in estimates of the propagation delay of on-chip interconnect. It has also been shown that including inductance in the repeater insertion design process as compared to using an RC model improves the overall repeater solution in terms of area, power, and delay with average savings of 40.8%, 15.6%, and 6.7%, respectively. On-Chip Inductance in High Speed Integrated Circuits is full of design and analysis techniques for RLC interconnect. These techniques are compared to techniques traditionally used for RC interconnect design to emphasize the effect of inductance. emOn-Chip Inductance in High Speed Integrated Circuits will be of interest to researchers in the area of high frequency interconnect, noise, and high performance integrated circuit design.