In All Likelihood

In All Likelihood PDF

Author: Yudi Pawitan

Publisher: OUP Oxford

Published: 2013-01-17

Total Pages: 543

ISBN-13: 0191650587

DOWNLOAD EBOOK →

Based on a course in the theory of statistics this text concentrates on what can be achieved using the likelihood/Fisherian method of taking account of uncertainty when studying a statistical problem. It takes the concept ot the likelihood as providing the best methods for unifying the demands of statistical modelling and the theory of inference. Every likelihood concept is illustrated by realistic examples, which are not compromised by computational problems. Examples range from a simile comparison of two accident rates, to complex studies that require generalised linear or semiparametric modelling. The emphasis is that the likelihood is not simply a device to produce an estimate, but an important tool for modelling. The book generally takes an informal approach, where most important results are established using heuristic arguments and motivated with realistic examples. With the currently available computing power, examples are not contrived to allow a closed analytical solution, and the book can concentrate on the statistical aspects of the data modelling. In addition to classical likelihood theory, the book covers many modern topics such as generalized linear models and mixed models, non parametric smoothing, robustness, the EM algorithm and empirical likelihood.

In All Likelihood

In All Likelihood PDF

Author: Yudi Pawitan

Publisher: Oxford University Press, USA

Published: 2013-01-17

Total Pages: 544

ISBN-13: 0199671222

DOWNLOAD EBOOK →

This book introduces likelihood as a unifying concept in statistical modelling and inference. The complete range of concepts and applications are covered, from very simple to very complex studies. It relies on realistic examples, and presents the main results using heuristic rather than formal mathematical arguments.

Empirical Likelihood

Empirical Likelihood PDF

Author: Art B. Owen

Publisher: CRC Press

Published: 2001-05-18

Total Pages: 322

ISBN-13: 1420036157

DOWNLOAD EBOOK →

Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al

Maximum Likelihood for Social Science

Maximum Likelihood for Social Science PDF

Author: Michael D. Ward

Publisher: Cambridge University Press

Published: 2018-11-15

Total Pages: 327

ISBN-13: 1316946657

DOWNLOAD EBOOK →

This volume provides a practical introduction to the method of maximum likelihood as used in social science research. Ward and Ahlquist focus on applied computation in R and use real social science data from actual, published research. Unique among books at this level, it develops simulation-based tools for model evaluation and selection alongside statistical inference. The book covers standard models for categorical data as well as counts, duration data, and strategies for dealing with data missingness. By working through examples, math, and code, the authors build an understanding about the contexts in which maximum likelihood methods are useful and develop skills in translating mathematical statements into executable computer code. Readers will not only be taught to use likelihood-based tools and generate meaningful interpretations, but they will also acquire a solid foundation for continued study of more advanced statistical techniques.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF

Author: Elias T. Krainski

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 284

ISBN-13: 0429629850

DOWNLOAD EBOOK →

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Confidence, Likelihood, Probability

Confidence, Likelihood, Probability PDF

Author: Tore Schweder

Publisher: Cambridge University Press

Published: 2016-02-24

Total Pages:

ISBN-13: 1316445054

DOWNLOAD EBOOK →

This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits, they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman–Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.

Statistical Evidence

Statistical Evidence PDF

Author: Richard Royall

Publisher: Routledge

Published: 2017-11-22

Total Pages: 258

ISBN-13: 1351414550

DOWNLOAD EBOOK →

Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.