Handbook of Research on Futuristic Design and Intelligent Computational Techniques in Neuroscience and Neuroengineering

Handbook of Research on Futuristic Design and Intelligent Computational Techniques in Neuroscience and Neuroengineering PDF

Author: Vikas Khullar

Publisher:

Published: 2021

Total Pages: 253

ISBN-13:

DOWNLOAD EBOOK →

This research book include quality chapters on computational models, designs and multidisciplinary approaches for neurological diagnosis and treatment, offering a resource of neurological databases, computational intelligence, brain health informatics, effective analysis of neural functions and technological interventions.

Computational Techniques in Neuroscience

Computational Techniques in Neuroscience PDF

Author: Kamal Malik

Publisher: CRC Press

Published: 2023-11-14

Total Pages: 243

ISBN-13: 1000994147

DOWNLOAD EBOOK →

The text discusses the techniques of deep learning and machine learning in the field of neuroscience, engineering approaches to study the brain structure and dynamics, convolutional networks for fast, energy-efficient neuromorphic computing, and reinforcement learning in feedback control. It showcases case studies in neural data analysis. Features: Focuses on neuron modeling, development, and direction of neural circuits to explain perception, behavior, and biologically inspired intelligent agents for decision making Showcases important aspects such as human behavior prediction using smart technologies and understanding the modeling of nervous systems Discusses nature-inspired algorithms such as swarm intelligence, ant colony optimization, and multi-agent systems Presents information-theoretic, control-theoretic, and decision-theoretic approaches in neuroscience. Includes case studies in functional magnetic resonance imaging (fMRI) and neural data analysis This reference text addresses different applications of computational neuro-sciences using artificial intelligence, deep learning, and other machine learning techniques to fine-tune the models, thereby solving the real-life problems prominently. It will further discuss important topics such as neural rehabili-tation, brain-computer interfacing, neural control, neural system analysis, and neurobiologically inspired self-monitoring systems. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, information technology, and biomedical engineering.

Methods in Neuronal Modeling

Methods in Neuronal Modeling PDF

Author: Christof Koch

Publisher: MIT Press

Published: 1998

Total Pages: 700

ISBN-13: 9780262112314

DOWNLOAD EBOOK →

Kinetic Models of Synaptic Transmission / Alain Destexhe, Zachary F. Mainen, Terrence J. Sejnowski / - Cable Theory for Dendritic Neurons / Wilfrid Rall, Hagai Agmon-Snir / - Compartmental Models of Complex Neurons / Idan Segev, Robert E. Burke / - Multiple Channels and Calcium Dynamics / Walter M. Yamada, Christof Koch, Paul R. Adams / - Modeling Active Dendritic Processes in Pyramidal Neurons / Zachary F. Mainen, Terrence J. Sejnowski / - Calcium Dynamics in Large Neuronal Models / Erik De Schutter, Paul Smolen / - Analysis of Neural Excitability and Oscillations / John Rinzel, Bard Ermentrout / - Design and Fabrication of Analog VLSI Neurons / Rodney Douglas, Misha Mahowald / - Principles of Spike Train Analysis / Fabrizio Gabbiani, Christof Koch / - Modeling Small Networks / Larry Abbott, Eve Marder / - Spatial and Temporal Processing in Central Auditory Networks / Shihab Shamma / - Simulating Large Networks of Neurons / Alexander D. Protopapas, Michael Vanier, James M. Bower / ...

Computational Neuroscience

Computational Neuroscience PDF

Author: Hanspeter A Mallot

Publisher: Springer Science & Business Media

Published: 2013-05-23

Total Pages: 142

ISBN-13: 3319008617

DOWNLOAD EBOOK →

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

Computational Modeling Methods for Neuroscientists

Computational Modeling Methods for Neuroscientists PDF

Author: Erik De Schutter

Publisher: National Geographic Books

Published: 2009-09-04

Total Pages: 0

ISBN-13: 0262013274

DOWNLOAD EBOOK →

A guide to computational modeling methods in neuroscience, covering a range of modeling scales from molecular reactions to large neural networks. This book offers an introduction to current methods in computational modeling in neuroscience. The book describes realistic modeling methods at levels of complexity ranging from molecular interactions to large neural networks. A “how to” book rather than an analytical account, it focuses on the presentation of methodological approaches, including the selection of the appropriate method and its potential pitfalls. It is intended for experimental neuroscientists and graduate students who have little formal training in mathematical methods, but it will also be useful for scientists with theoretical backgrounds who want to start using data-driven modeling methods. The mathematics needed are kept to an introductory level; the first chapter explains the mathematical methods the reader needs to master to understand the rest of the book. The chapters are written by scientists who have successfully integrated data-driven modeling with experimental work, so all of the material is accessible to experimentalists. The chapters offer comprehensive coverage with little overlap and extensive cross-references, moving from basic building blocks to more complex applications. Contributors Pablo Achard, Haroon Anwar, Upinder S. Bhalla, Michiel Berends, Nicolas Brunel, Ronald L. Calabrese, Brenda Claiborne, Hugo Cornelis, Erik De Schutter, Alain Destexhe, Bard Ermentrout, Kristen Harris, Sean Hill, John R. Huguenard, William R. Holmes, Gwen Jacobs, Gwendal LeMasson, Henry Markram, Reinoud Maex, Astrid A. Prinz, Imad Riachi, John Rinzel, Arnd Roth, Felix Schürmann, Werner Van Geit, Mark C. W. van Rossum, Stefan Wils

Computational Neuroscience and Cognitive Modelling

Computational Neuroscience and Cognitive Modelling PDF

Author: Britt Anderson

Publisher: SAGE

Published: 2014-01-08

Total Pages: 241

ISBN-13: 1446297373

DOWNLOAD EBOOK →

"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience PDF

Author: Paul Miller

Publisher: MIT Press

Published: 2018-10-09

Total Pages: 405

ISBN-13: 0262347563

DOWNLOAD EBOOK →

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

The Computational Brain, 25th Anniversary Edition

The Computational Brain, 25th Anniversary Edition PDF

Author: Patricia S. Churchland

Publisher: MIT Press

Published: 2016-11-04

Total Pages: 569

ISBN-13: 0262533391

DOWNLOAD EBOOK →

An anniversary edition of the classic work that influenced a generation of neuroscientists and cognitive neuroscientists. Before The Computational Brain was published in 1992, conceptual frameworks for brain function were based on the behavior of single neurons, applied globally. In The Computational Brain, Patricia Churchland and Terrence Sejnowski developed a different conceptual framework, based on large populations of neurons. They did this by showing that patterns of activities among the units in trained artificial neural network models had properties that resembled those recorded from populations of neurons recorded one at a time. It is one of the first books to bring together computational concepts and behavioral data within a neurobiological framework. Aimed at a broad audience of neuroscientists, computer scientists, cognitive scientists, and philosophers, The Computational Brain is written for both expert and novice. This anniversary edition offers a new preface by the authors that puts the book in the context of current research. This approach influenced a generation of researchers. Even today, when neuroscientists can routinely record from hundreds of neurons using optics rather than electricity, and the 2013 White House BRAIN initiative heralded a new era in innovative neurotechnologies, the main message of The Computational Brain is still relevant.