Introduction to Modeling Cognitive Processes

Introduction to Modeling Cognitive Processes PDF

Author: Tom Verguts

Publisher: MIT Press

Published: 2022-02-01

Total Pages: 265

ISBN-13: 0262045362

DOWNLOAD EBOOK →

An introduction to computational modeling for cognitive neuroscientists, covering both foundational work and recent developments. Cognitive neuroscientists need sophisticated conceptual tools to make sense of their field’s proliferation of novel theories, methods, and data. Computational modeling is such a tool, enabling researchers to turn theories into precise formulations. This book offers a mathematically gentle and theoretically unified introduction to modeling cognitive processes. Theoretical exercises of varying degrees of difficulty throughout help readers develop their modeling skills. After a general introduction to cognitive modeling and optimization, the book covers models of decision making; supervised learning algorithms, including Hebbian learning, delta rule, and backpropagation; the statistical model analysis methods of model parameter estimation and model evaluation; the three recent cognitive modeling approaches of reinforcement learning, unsupervised learning, and Bayesian models; and models of social interaction. All mathematical concepts are introduced gradually, with no background in advanced topics required. Hints and solutions for exercises and a glossary follow the main text. All code in the book is Python, with the Spyder editor in the Anaconda environment. A GitHub repository with Python files enables readers to access the computer code used and start programming themselves. The book is suitable as an introduction to modeling cognitive processes for students across a range of disciplines and as a reference for researchers interested in a broad overview.

Computational Explorations in Cognitive Neuroscience

Computational Explorations in Cognitive Neuroscience PDF

Author: Randall C. O'Reilly

Publisher: MIT Press

Published: 2000-08-28

Total Pages: 540

ISBN-13: 9780262650540

DOWNLOAD EBOOK →

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.

Computational Neuroscience and Cognitive Modelling

Computational Neuroscience and Cognitive Modelling PDF

Author: Britt Anderson

Publisher: SAGE

Published: 2014-01-08

Total Pages: 241

ISBN-13: 1446297373

DOWNLOAD EBOOK →

"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF

Author: Daniel S. Levine

Publisher: Routledge

Published: 2018-10-26

Total Pages: 480

ISBN-13: 0429828802

DOWNLOAD EBOOK →

This textbook provides a general introduction to the field of neural networks. Thoroughly revised and updated from the previous editions of 1991 and 2000, the current edition concentrates on networks for modeling brain processes involved in cognitive and behavioral functions. Part one explores the philosophy of modeling and the field’s history starting from the mid-1940s, and then discusses past models of associative learning and of short-term memory that provide building blocks for more complex recent models. Part two of the book reviews recent experimental findings in cognitive neuroscience and discusses models of conditioning, categorization, category learning, vision, visual attention, sequence learning, behavioral control, decision making, reasoning, and creativity. The book presents these models both as abstract ideas and through examples and concrete data for specific brain regions. The book includes two appendices to help ground the reader: one reviewing the mathematics used in network modeling, and a second reviewing basic neuroscience at both the neuron and brain region level. The book also includes equations, practice exercises, and thought experiments.

Cognitive Neuroscience

Cognitive Neuroscience PDF

Author: R. E. Passingham

Publisher: Oxford University Press

Published: 2016

Total Pages: 153

ISBN-13: 0198786220

DOWNLOAD EBOOK →

This volume describes the new field of cognitive neuroscience - the study of what happens in the brain when we perceive, think, reason, remember, and act. Focusing on the human brain, Passingham looks at the most recent research in the field, the modern brain imaging technologies, and what the images can and can't tell us.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF

Author: Daniel S. Levine

Publisher: Psychology Press

Published: 2000-02-01

Total Pages: 573

ISBN-13: 1135692246

DOWNLOAD EBOOK →

This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

The Student's Guide to Cognitive Neuroscience

The Student's Guide to Cognitive Neuroscience PDF

Author: Jamie Ward

Publisher: Psychology Press

Published: 2015-02-11

Total Pages: 549

ISBN-13: 1317586018

DOWNLOAD EBOOK →

Reflecting recent changes in the way cognition and the brain are studied, this thoroughly updated third edition of the best-selling textbook provides a comprehensive and student-friendly guide to cognitive neuroscience. Jamie Ward provides an easy-to-follow introduction to neural structure and function, as well as all the key methods and procedures of cognitive neuroscience, with a view to helping students understand how they can be used to shed light on the neural basis of cognition. The book presents an up-to-date overview of the latest theories and findings in all the key topics in cognitive neuroscience, including vision, memory, speech and language, hearing, numeracy, executive function, social and emotional behaviour and developmental neuroscience, as well as a new chapter on attention. Throughout, case studies, newspaper reports and everyday examples are used to help students understand the more challenging ideas that underpin the subject. In addition each chapter includes: Summaries of key terms and points Example essay questions Recommended further reading Feature boxes exploring interesting and popular questions and their implications for the subject. Written in an engaging style by a leading researcher in the field, and presented in full-color including numerous illustrative materials, this book will be invaluable as a core text for undergraduate modules in cognitive neuroscience. It can also be used as a key text on courses in cognition, cognitive neuropsychology, biopsychology or brain and behavior. Those embarking on research will find it an invaluable starting point and reference. The Student’s Guide to Cognitive Neuroscience, 3rd Edition is supported by a companion website, featuring helpful resources for both students and instructors.

Handbook of Developmental Cognitive Neuroscience, second edition

Handbook of Developmental Cognitive Neuroscience, second edition PDF

Author: Charles A. Nelson

Publisher: MIT Press

Published: 2008-07-11

Total Pages: 985

ISBN-13: 0262141043

DOWNLOAD EBOOK →

The second edition of an essential resource to the evolving field of developmental cognitive neuroscience, completely revised, with expanded emphasis on social neuroscience, clinical disorders, and imaging genomics. The publication of the second edition of this handbook testifies to the rapid evolution of developmental cognitive neuroscience as a distinct field. Brain imaging and recording technologies, along with well-defined behavioral tasks—the essential methodological tools of cognitive neuroscience—are now being used to study development. Technological advances have yielded methods that can be safely used to study structure-function relations and their development in children's brains. These new techniques combined with more refined cognitive models account for the progress and heightened activity in developmental cognitive neuroscience research. The Handbook covers basic aspects of neural development, sensory and sensorimotor systems, language, cognition, emotion, and the implications of lifelong neural plasticity for brain and behavioral development. The second edition reflects the dramatic expansion of the field in the seven years since the publication of the first edition. This new Handbook has grown from forty-one chapters to fifty-four, all original to this edition. It places greater emphasis on affective and social neuroscience—an offshoot of cognitive neuroscience that is now influencing the developmental literature. The second edition also places a greater emphasis on clinical disorders, primarily because such research is inherently translational in nature. Finally, the book's new discussions of recent breakthroughs in imaging genomics include one entire chapter devoted to the subject. The intersection of brain, behavior, and genetics represents an exciting new area of inquiry, and the second edition of this essential reference work will be a valuable resource for researchers interested in the development of brain-behavior relations in the context of both typical and atypical development.