An Informal Introduction to Gauge Field Theories

An Informal Introduction to Gauge Field Theories PDF

Author: Ian J. R. Aitchison

Publisher: Cambridge University Press

Published: 2007-09-27

Total Pages: 192

ISBN-13: 9780521039543

DOWNLOAD EBOOK →

Four forces are dominant in physics: gravity, electromagnetism and the weak and strong nuclear forces. Quantum electrodynamics - the highly successful theory of the electromagnetic interaction - is a gauge field theory. In this short book Dr Aitchison gives an introduction to these theories, a knowledge of which is essential in understanding modern particle physics.

Gauge Fields

Gauge Fields PDF

Author: L. D. Faddeev

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 236

ISBN-13: 0429962371

DOWNLOAD EBOOK →

First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.

Quantum Field Theory: A Tourist Guide for Mathematicians

Quantum Field Theory: A Tourist Guide for Mathematicians PDF

Author: Gerald B. Folland

Publisher: American Mathematical Soc.

Published: 2021-02-03

Total Pages: 325

ISBN-13: 1470464837

DOWNLOAD EBOOK →

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.

Lectures On Quantum Field Theory (Second Edition)

Lectures On Quantum Field Theory (Second Edition) PDF

Author: Ashok Das

Publisher: World Scientific

Published: 2020-07-24

Total Pages: 940

ISBN-13: 9811220883

DOWNLOAD EBOOK →

This book comprises the lectures of a two-semester course on quantum field theory, presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis on the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactions are also developed systematically. Regularization and (BPHZ) renormalization of field theories as well as gauge theories are discussed in detail, leading to a derivation of the renormalization group equation. In addition, two chapters — one on the Dirac quantization of constrained systems and another on discrete symmetries — are included for completeness, although these are not covered in the two-semester course.This second edition includes two new chapters, one on Nielsen identities and the other on basics of global supersymmetry. It also includes two appendices, one on fermions in arbitrary dimensions and the other on gauge invariant potentials and the Fock-Schwinger gauge.

An Invitation to Quantum Field Theory

An Invitation to Quantum Field Theory PDF

Author: Luis Alvarez-Gaumé

Publisher: Springer

Published: 2011-11-25

Total Pages: 299

ISBN-13: 3642237282

DOWNLOAD EBOOK →

This book provides an introduction to Quantum Field Theory (QFT) at an elementary level—with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework.

Quantum Field Theory

Quantum Field Theory PDF

Author: Mark Srednicki

Publisher: Cambridge University Press

Published: 2007-01-25

Total Pages: 664

ISBN-13: 1139462768

DOWNLOAD EBOOK →

Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.

Path Integral Quantization and Stochastic Quantization

Path Integral Quantization and Stochastic Quantization PDF

Author: Michio Masujima

Publisher: Springer

Published: 2003-07-01

Total Pages: 287

ISBN-13: 3540481621

DOWNLOAD EBOOK →

In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. For the description of the classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Harniltonian formalisni is derived from the Lagrangian formalism. In the standard formalism of quantum mechanics, we usually make use of the Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism of quantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Bsed on the optical analogy, we obtain the Schrodinger equation as a result of the inverse of the Eikonal approximation to the Hamilton Jacobi equation, and thus we arrive at "wave mechanics" . The second formalism of quantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion frorn consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two forrnalisrns make up the Hamiltonian formalism of quantum me chanics.

Modern Quantum Field Theory

Modern Quantum Field Theory PDF

Author: Tom Banks

Publisher: Cambridge University Press

Published: 2008-09-18

Total Pages: 323

ISBN-13: 1139473891

DOWNLOAD EBOOK →

Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.

Interpreting Quantum Theories

Interpreting Quantum Theories PDF

Author: Laura Ruetsche

Publisher: Oxford University Press

Published: 2011-06-02

Total Pages: 400

ISBN-13: 0191617377

DOWNLOAD EBOOK →

Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.