Excitons in Low-Dimensional Semiconductors

Excitons in Low-Dimensional Semiconductors PDF

Author: Stephan Glutsch

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 302

ISBN-13: 3662071509

DOWNLOAD EBOOK →

The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.

The Physics of Low-dimensional Semiconductors

The Physics of Low-dimensional Semiconductors PDF

Author: John H. Davies

Publisher: Cambridge University Press

Published: 1998

Total Pages: 460

ISBN-13: 9780521484916

DOWNLOAD EBOOK →

The composition of modern semiconductor heterostructures can be controlled precisely on the atomic scale to create low-dimensional systems. These systems have revolutionised semiconductor physics, and their impact on technology, particularly for semiconductor lasers and ultrafast transistors, is widespread and burgeoning. This book provides an introduction to the general principles that underlie low-dimensional semiconductors. As far as possible, simple physical explanations are used, with reference to examples from actual devices. The author shows how, beginning with fundamental results from quantum mechanics and solid-state physics, a formalism can be developed that describes the properties of low-dimensional semiconductor systems. Among numerous examples, two key systems are studied in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties find application in lasers and other opto-electronic devices. The book includes many exercises and will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.

Low-Dimensional Semiconductor Structures

Low-Dimensional Semiconductor Structures PDF

Author: Keith Barnham

Publisher: Cambridge University Press

Published: 2008-12-11

Total Pages: 408

ISBN-13: 9780521599047

DOWNLOAD EBOOK →

Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.

Low-dimensional Semiconductors

Low-dimensional Semiconductors PDF

Author: M. J. Kelly

Publisher: Clarendon Press

Published: 1995-11-23

Total Pages: 569

ISBN-13: 0191590096

DOWNLOAD EBOOK →

This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherant point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design and the prepare semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as a small as a few atomic layers in lateral extent. The resulting structures open up many new ares of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.

Optical Properties of Low-dimensional Materials

Optical Properties of Low-dimensional Materials PDF

Author: Tetsuo Ogawa

Publisher: World Scientific

Published: 1998

Total Pages: 478

ISBN-13: 9789810230487

DOWNLOAD EBOOK →

This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.

Low-Dimensional Systems

Low-Dimensional Systems PDF

Author: Tobias Brandes

Publisher: Springer Science & Business Media

Published: 2000-04-05

Total Pages: 220

ISBN-13: 3540672370

DOWNLOAD EBOOK →

Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional ‘quantum wires’ and ‘quantum dots’ (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.

Low-Dimensional and Nanostructured Materials and Devices

Low-Dimensional and Nanostructured Materials and Devices PDF

Author: Hilmi Ünlü

Publisher: Springer

Published: 2015-12-01

Total Pages: 688

ISBN-13: 3319253409

DOWNLOAD EBOOK →

This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

A Compendium of Solid State Theory

A Compendium of Solid State Theory PDF

Author: Ladislaus Alexander Bányai

Publisher: Springer

Published: 2018-06-26

Total Pages: 155

ISBN-13: 331978613X

DOWNLOAD EBOOK →

Designed to sit alongside more conventional established condensed matter physics textbooks, this compact volume offers a concise presentation of the principles of solid state theory, ideal for advanced students and researchers requiring an overview or a quick refresher on a specific topic. The book starts from the one-electron theory of solid state physics, moving through electron-electron interaction and many-body approximation schemes, to lattice oscillations and their interactions with electrons. Subsequent chapters discuss transport theory and optical properties, phase transitions and some properties of low-dimensional semiconductors. Throughout the text, mathematical proofs are often only sketched, and the final chapter of the book reviews some of the key concepts and formulae used in theoretical physics. Aimed primarily at graduate and advanced undergraduate students taking courses on condensed matter theory, the book serves as a study guide to reinforce concepts learned through conventional solid state texts. Researchers and lecturers will also find it a useful resource as a concise set of notes on fundamental topics.

Low-dimensional Semiconductors

Low-dimensional Semiconductors PDF

Author: Michael J. Kelly

Publisher:

Published: 1995

Total Pages: 0

ISBN-13: 9781383023169

DOWNLOAD EBOOK →

It is now routine to design and prepare semiconductor multilayers one atomic layer at a time, with independent control over the doping and composition approaching atomic-scale resolution in each layer. In turn, these multilayers can be patterned with features that are as small as only a few atomic layers in lateral extent. These resulting structures not only have led to new generations of electronic and optoelectronic devices offering superior performance, but also have opened up many new areas of exciting solid state and quantum physics. This book collates the whole of semiconductor science and technology relating to semiconductor multilayers since 1970, and points the way towards the ultimate of materials engineering - the design and preparation of solids atom by atom. Materials, technology, physics, and device issues are covered in detail, making this work ideal for physicists, electronic engineers, and materials scientists alike.

Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices

Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices PDF

Author: M. Balkanski

Publisher: Springer Science & Business Media

Published: 1997-11-30

Total Pages: 316

ISBN-13: 9780792348757

DOWNLOAD EBOOK →

This volume on Advanced Electronic Technologies and Systems based on Low Dimensional Quantum Devices closes a three years series of NATO -AS!' s. The first year was focused on the fundamental properties and applications. The second year was devoted to Devices Based on Low-Dimensional Semiconductor Structures. The third year is covering Systems Based on Low-Dimensional Quantum Semiconductor Devices. The three volumes containing the lectures given at the three successive NATO -ASI's constitute a complete review on the latest advances in semiconductor Science and Technology from the methods of fabrication of the quantum structures through the fundamental physics am basic knowledge of properties and projection of performances to the technology of devices and systems. In the first volume: " Fabrication, Properties and Application of Low Dimensional Semiconductors" are described the practical ways in which quantum structures are produced, the present status of the technology, difficulties encountered, and advances to be expected. The basic theory of Quantum Wells, Double Quantum Wells and Superlattices is introduced and the fundamental aspects of their optical properties are presented. The effect of reduction of dimensionality on lattice dynamics of quantum structures is also discussed. In the second volume: " Devices Based on Low Dimensional Structures" the fundamentals of quantum structures and devices in the two major fields: Electro-Optical Devices and Pseudomorphic High Eectron Mobility Transistors are extensively discussed.