X-Ray Multiple-Wave Diffraction

X-Ray Multiple-Wave Diffraction PDF

Author: Shih-Lin Chang

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 443

ISBN-13: 3662109840

DOWNLOAD EBOOK →

X-ray multiple-wave diffraction, sometimes called multiple diffraction or N-beam diffraction, results from the scattering of X-rays from periodic two or higher-dimensional structures, like 2-d and 3-d crystals and even quasi crystals. The interaction of the X-rays with the periodic arrangement of atoms usually provides structural information about the scatterer. Unlike the usual Bragg reflection, the so-called two-wave diffraction, the multiply diffracted intensities are sensitive to the phases of the structure factors in volved. This gives X-ray multiple-wave diffraction the chance to solve the X-ray phase problem. On the other hand, the condition for generating an X ray multiple-wave diffraction is much more strict than in two-wave cases. This makes X-ray multiple-wave diffraction a useful technique for precise measure ments of crystal lattice constants and the wavelength of radiation sources. Recent progress in the application of this particular diffraction technique to surfaces, thin films, and less ordered systems has demonstrated the diver sity and practicability of the technique for structural research in condensed matter physics, materials sciences, crystallography, and X-ray optics. The first book on this subject, Multiple Diffraction of X-Rays in Crystals, was published in 1984, and intended to give a contemporary review on the fundamental and application aspects of this diffraction.

University Physics

University Physics PDF

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK →

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.

X-Ray Diffraction

X-Ray Diffraction PDF

Author: C. Suryanarayana

Publisher: Springer Science & Business Media

Published: 1998-06-30

Total Pages: 302

ISBN-13: 9780306457449

DOWNLOAD EBOOK →

In this, the only book available to combine both theoretical and practical aspects of x-ray diffraction, the authors emphasize a "hands on" approach through experiments and examples based on actual laboratory data. Part I presents the basics of x-ray diffraction and explains its use in obtaining structural and chemical information. In Part II, eight experimental modules enable the students to gain an appreciation for what information can be obtained by x-ray diffraction and how to interpret it. Examples from all classes of materials -- metals, ceramics, semiconductors, and polymers -- are included. Diffraction patterns and Bragg angles are provided for students without diffractometers. 192 illustrations.

Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals PDF

Author: Shih-Lin In-Hang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 3642821669

DOWNLOAD EBOOK →

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

X-Ray and Neutron Dynamical Diffraction

X-Ray and Neutron Dynamical Diffraction PDF

Author: André Authier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 1461558794

DOWNLOAD EBOOK →

This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.

Early Days of X-ray Crystallography

Early Days of X-ray Crystallography PDF

Author: André Authier

Publisher: OUP Oxford

Published: 2013-08-01

Total Pages: 464

ISBN-13: 0191635022

DOWNLOAD EBOOK →

The year 2012 marked the centenary of one of the most significant discoveries of the early twentieth century, the discovery of X-ray diffraction (March 1912, by Laue, Friedrich and Knipping) and of Bragg's law (November 1912). The discovery of X-ray diffraction confirmed the wave nature of X-rays and the space-lattice hypothesis. It had two major consequences: the analysis of the structure of atoms, and the determination of the atomic structure of materials. This had a momentous impact in chemistry, physics, mineralogy, material science, biology and X-ray spectroscopy. The book relates the discovery itself, the early days of X-ray crystallography, and the way the news of the discovery spread round the world. It explains how the first crystal structures were determined by William Bragg and his son Lawrence, and recounts which were the early applications of X-ray crystallography in chemistry, mineralogy, materials science, physics, biological sciences and X-ray spectroscopy. It also tells how the concept of space lattice developed since ancient times up to the nineteenth century, and how our conception of the nature of light has changed over time. The contributions of the main actors of the story, prior to the discovery, at the time of the discovery and immediately afterwards, are described through their writings and are put into the context of the time, accompanied by brief biographical details. This thoroughly researched account on the multiple faces of a scientific specialty, X-ray crystallography, is aimed both at the scientists, who rarely subject the historical material of past discoveries in their field to particular scrutiny with regard to the historical details and at the historians of science who often lack the required expert knowledge to scrutinize the involved technical content in sufficient depth (M. Eckert - Metascience).

Basic Concepts of X-Ray Diffraction

Basic Concepts of X-Ray Diffraction PDF

Author: Emil Zolotoyabko

Publisher: John Wiley & Sons

Published: 2014-02-10

Total Pages: 299

ISBN-13: 3527681183

DOWNLOAD EBOOK →

Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.

Novel Microstructures for Solids

Novel Microstructures for Solids PDF

Author: Richard A Dunlap

Publisher: Morgan & Claypool Publishers

Published: 2018-12-05

Total Pages: 125

ISBN-13: 1643273388

DOWNLOAD EBOOK →

For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.

X-Ray and Neutron Diffraction

X-Ray and Neutron Diffraction PDF

Author: G. E. Bacon

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 393

ISBN-13: 1483158292

DOWNLOAD EBOOK →

X-Ray and Neutron Diffraction describes the developments of the X-ray and the various research done in neutron diffraction. Part I of the book concerns the principles and applications of the X-ray and neutrons through their origins from classical crystallography. The book explains the use of diffraction methods to show the highly regular arrangement of atoms that forms a continuous pattern in three-dimensional space. The text evaluates the limitations and benefits of using the different types of radiation sources, whether these are X-rays, neutrons, or electrons. Part II is a collection of reprints discussing the development of techniques that includes a modification of the Bragg method, which is a method of X-ray crystal analysis. One paper presents an improved numerical method of two-dimensional Fourier synthesis for crystals. This method uses a greatly reduced process of arrangement of sets of figures found in the two-dimensional Fourier series. The book also notes the theoretical considerations and the practical details, and then addresses precautions against possible inclusions of errors in this method. The text deals as well with the magnetic scattering of neutrons, and one paper presents a simple method of gathering information about the magnetic moment of the neutron besides the traditional Stern-Gerlach method. Nuclear scientists and physicists, atomic researchers, and nuclear engineers will greatly appreciate the book.