Waves In Gradient Metamaterials

Waves In Gradient Metamaterials PDF

Author: Alexander B Shvartsburg

Publisher: World Scientific

Published: 2013-03-25

Total Pages: 339

ISBN-13: 9814436976

DOWNLOAD EBOOK →

This book opens a new avenue to an engendering field of applied physics, located at the “crossing” of modern photonics, electromagnetics, acoustics and material science. It also highlights the concept of “non-locality”, which proves to be not a special feature of quantum phenomena, but is shown to have an important counterpart in classical physics and its engineering applications too. Furthermore, it visualizes the physical results by means of simple analytical presentations, reduced sometimes to the elementary functions.

Waves in Gradient Metamaterials

Waves in Gradient Metamaterials PDF

Author: Aleksandr Borisovich Shvart?s?burg

Publisher: World Scientific

Published: 2013

Total Pages: 339

ISBN-13: 9814436968

DOWNLOAD EBOOK →

This book opens a new avenue to an engendering field of applied physics, located at the OC crossingOCO of modern photonics, electromagnetics, acoustics and material science. It also highlights the concept of OC non-localityOCO, which proves to be not a special feature of quantum phenomena, but is shown to have an important counterpart in classical physics and its engineering applications too. Furthermore, it visualizes the physical results by means of simple analytical presentations, reduced sometimes to the elementary functions.

Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials

Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials PDF

Author: Mezhlum A. Sumbatyan

Publisher: Springer

Published: 2019-05-17

Total Pages: 254

ISBN-13: 3030174700

DOWNLOAD EBOOK →

This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: • Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials • Self-organization of molecules in ferroelectric thin films • Combined models for surface layers of nanostructures • Computer simulation at the micro- and nanoscale • Surface effects with anisotropic properties and imperfect temperature contacts • Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces • Special interface finite elements and other numerical and analytical methods for composite structures

Developments and Novel Approaches in Biomechanics and Metamaterials

Developments and Novel Approaches in Biomechanics and Metamaterials PDF

Author: Bilen Emek Abali

Publisher: Springer Nature

Published: 2020-07-06

Total Pages: 484

ISBN-13: 3030504646

DOWNLOAD EBOOK →

This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019

Programmable Elastic Metamaterials for Wave Control and Device Applications

Programmable Elastic Metamaterials for Wave Control and Device Applications PDF

Author: Hui Chen

Publisher: Frontiers Media SA

Published: 2023-10-27

Total Pages: 108

ISBN-13: 2832537146

DOWNLOAD EBOOK →

Emerging from electromagnetic waves and fast extending to acoustic and elastic waves, metamaterials that exhibit extraordinary wave control abilities have been gaining soaring attention. Over the past two decades, elastic metamaterials with engineered microstructures have provided a variety of appealing solutions for controlling elastic waves and vibrations. By tailoring their internal microstructures at a subwavelength scale, elastic metamaterials fruitfully distinct themselves from traditional materials or phononic crystals by their striking functions in wave trajectory manipulation, cloaking, nonreciprocal and topological wave control, as well as low-frequency wave/vibration mitigation and absorption.

Metamaterials

Metamaterials PDF

Author: Tie Jun Cui

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 311

ISBN-13: 1482223112

DOWNLOAD EBOOK →

Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals is a comprehensive and updated research monograph that focuses on recent advances in metamaterials based on the effective medium theory in microwave frequencies. Most of these procedures were conducted in the State Key Laboratory of Millimeter Waves, Southeast University, China. The book conveys the essential concept of metamaterials from the microcosmic structure to the macroscopic electromagnetic properties and helps readers quickly obtain needed skills in creating new devices at microwave frequencies using metamaterials. The authors present the latest progress on metamaterials and transformation optics and provide abundant examples of metamaterial-based devices accompanied with detailed procedures to simulate, fabricate, and measure them. Comprised of ten chapters, the book comprehensively covers both the fundamentals and the applications of metamaterials. Along with an introduction to the subject, the first three chapters discuss effective medium theory and artificial particles. The next three chapters cover homogeneous metamaterials (super crystals), random metamaterials (super noncrystals), and inhomogeneous metamaterials (super quasicrystals). The final four chapters examine gradient-index inhomogeneous metamaterials, nearly isotropic inhomogeneous metamaterials, and anisotropic inhomogeneous metamaterials, after which the authors provide their conclusions and closing remarks. The book is completely self-contained, making it easy to follow.

Transformation Electromagnetics and Metamaterials

Transformation Electromagnetics and Metamaterials PDF

Author: Douglas H. Werner

Publisher: Springer Science & Business Media

Published: 2013-07-19

Total Pages: 500

ISBN-13: 1447149963

DOWNLOAD EBOOK →

Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.

Progress in Optics

Progress in Optics PDF

Author:

Publisher: Academic Press

Published: 2015-06-14

Total Pages: 647

ISBN-13: 0128024828

DOWNLOAD EBOOK →

The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. Comprehensive, in-depth reviews Edited by the leading authority in the field

Hyperbolic Metamaterials

Hyperbolic Metamaterials PDF

Author: Igor I Smolyaninov

Publisher: Morgan & Claypool Publishers

Published: 2018-03-23

Total Pages: 81

ISBN-13: 1681745658

DOWNLOAD EBOOK →

Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.

Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media

Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media PDF

Author: Noé Jiménez

Publisher: Springer Nature

Published: 2021-11-03

Total Pages: 456

ISBN-13: 3030843009

DOWNLOAD EBOOK →

This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.