Wave Propagation

Wave Propagation PDF

Author: James H. Williams, Jr.

Publisher: MIT Press

Published: 2019-12-31

Total Pages: 449

ISBN-13: 0262039907

DOWNLOAD EBOOK →

An engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details—many classical but others not heretofore published. A wave is a traveling disturbance or oscillation—intentional or unintentional—that usually transfers energy without a net displacement of the medium in which the energy travels. Wave propagation is any of the means by which a wave travels. This book offers an engineering-oriented introduction to wave propagation that focuses on wave propagation in one-dimensional models that are anchored by the classical wave equation. The text is written in a style that is highly accessible to undergraduates, featuring extended and repetitive expositions and displaying and explaining mathematical and physical details—many classical but others not heretofore published. The formulations are devised to provide analytical foundations for studying more advanced topics of wave propagation. After a precalculus summary of rudimentary wave propagation and an introduction of the classical wave equation, the book presents solutions for the models of systems that are dimensionally infinite, semi-infinite, and finite. Chapters typically begin with a vignette based on some aspect of wave propagation, drawing on a diverse range of topics. The book provides more than two hundred end-of-chapter problems (supplying answers to most problems requiring a numerical result or brief analytical expression). Appendixes cover equations of motion for strings, rods, and circular shafts; shear beams; and electric transmission lines.

Electromagnetic Wave Propagation, Radiation, and Scattering

Electromagnetic Wave Propagation, Radiation, and Scattering PDF

Author: Akira Ishimaru

Publisher: John Wiley & Sons

Published: 2017-08-09

Total Pages: 968

ISBN-13: 1119079535

DOWNLOAD EBOOK →

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.

Theory of Electromagnetic Wave Propagation

Theory of Electromagnetic Wave Propagation PDF

Author: Charles Herach Papas

Publisher: Courier Corporation

Published: 2014-05-05

Total Pages: 274

ISBN-13: 048614514X

DOWNLOAD EBOOK →

Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.

Radio Wave Propagation Fundamentals, Second Edition

Radio Wave Propagation Fundamentals, Second Edition PDF

Author: Artem Saakian

Publisher: Artech House

Published: 2020-12-31

Total Pages: 422

ISBN-13: 1630818453

DOWNLOAD EBOOK →

This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.

Wave Propagation in a Random Medium

Wave Propagation in a Random Medium PDF

Author: Lev A. Chernov

Publisher: Courier Dover Publications

Published: 2017-05-17

Total Pages: 179

ISBN-13: 0486812235

DOWNLOAD EBOOK →

Ground-breaking contribution to the literature, widely used by scientists, engineers, and students. Topics include theory of wave propagation in randomly inhomogeneous media, ray and wave theories of scattering at random inhomogeneities, more. 1960 edition.

Wave Propagation in Periodic Structures

Wave Propagation in Periodic Structures PDF

Author: Léon Brillouin

Publisher: Courier Dover Publications

Published: 2003

Total Pages: 0

ISBN-13: 9780486495569

DOWNLOAD EBOOK →

Classic treatment of wave propagation covers a broad variety of problems with a common mathematical background: solid state physics, X-rays, certain optical reflections, electrical engineering, more .131 illustrations. 1946 edition."

Parabolic Equation Methods for Electromagnetic Wave Propagation

Parabolic Equation Methods for Electromagnetic Wave Propagation PDF

Author: Mireille Levy

Publisher: IET

Published: 2000

Total Pages: 360

ISBN-13: 9780852967645

DOWNLOAD EBOOK →

Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR

Wave Propagation in Elastic Solids

Wave Propagation in Elastic Solids PDF

Author: J. D. Achenbach

Publisher: Elsevier

Published: 2016-01-21

Total Pages: 440

ISBN-13: 1483163733

DOWNLOAD EBOOK →

Wave Propagation in Elastic Solids focuses on linearized theory and perfectly elastic media. This book discusses the one-dimensional motion of an elastic continuum; linearized theory of elasticity; elastodynamic theory; and elastic waves in an unbounded medium. The plane harmonic waves in elastic half-spaces; harmonic waves in waveguides; and forced motions of a half-space are also elaborated. This text likewise covers the transient waves in layers and rods; diffraction of waves by a slit; and thermal and viscoelastic effects, and effects of anisotropy and nonlinearity. Other topics include the summary of equations in rectangular coordinates, time-harmonic plane waves, approximate theories for rods, and transient in-plane motion of a layer. This publication is a good source for students and researchers conducting work on the wave propagation in elastic solids.

Seismic Wave Propagation and Scattering in the Heterogenous Earth

Seismic Wave Propagation and Scattering in the Heterogenous Earth PDF

Author: Haruo Sato

Publisher: Springer Science & Business Media

Published: 2008-12-17

Total Pages: 308

ISBN-13: 3540896236

DOWNLOAD EBOOK →

Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.

Radio Wave Propagation

Radio Wave Propagation PDF

Author: John A. Richards

Publisher: Springer Science & Business Media

Published: 2008-01-22

Total Pages: 132

ISBN-13: 3540771255

DOWNLOAD EBOOK →

This work treats the essential elements of radio wave propagation without requiring recourse to advanced electromagnetic concepts and equations. However, it provides sufficient detail to allow those concerned with wireless systems to acquire quickly a practical working knowledge of the important concepts. Radio wave propagation is placed in a practical context by considering the design aspects of communications systems at microwave frequencies. A fuller consideration of the electromagnetic properties of materials is given late in the book rather than as an introductory chapter.