Vortical Flows Research Program of the Fluid Dynamics Research Branch

Vortical Flows Research Program of the Fluid Dynamics Research Branch PDF

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-24

Total Pages: 26

ISBN-13: 9781723489266

DOWNLOAD EBOOK →

The research interests of the staff of the Fluid Dynamics Research Branch in the general area of vortex flows are summarized. A major factor in the development of enchanced maneuverability and reduced drag by aerodynamic means is the use of effective vortex control devices. The key to control is the use of emerging computational tools for predicting viscous fluid flow in close coordination with fundamental experiments. In fact, the extremely complex flow fields resulting from numerical solutions to boundary value problems based on the Navier-Stokes equations requires an intimate relationship between computation and experiment. The field of vortex flows is important in so many practical areas that a concerted effort in this area is justified. A brief background of the research activity undertaken is presented, including a proposed classification of the research areas. The classification makes a distinction between issues related to vortex formation and structure, and work on vortex interactions and evolution. Examples of current research results are provided, along with references where available. Based upon the current status of research and planning, speculation on future research directions of the group is also given. Ames Research Center NASA-TM-88332, A-86324, NAS 1.15:88332 RTOP 505-60-31

Vortical Flows

Vortical Flows PDF

Author: Jie-Zhi Wu

Publisher: Springer

Published: 2015-06-23

Total Pages: 453

ISBN-13: 3662470616

DOWNLOAD EBOOK →

This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

Fluid Vortices

Fluid Vortices PDF

Author: Sheldon Green

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 905

ISBN-13: 940110249X

DOWNLOAD EBOOK →

Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.

Inviscid Incompressible Flow

Inviscid Incompressible Flow PDF

Author: Jeffrey S. Marshall

Publisher: John Wiley & Sons

Published: 2001-06-25

Total Pages: 410

ISBN-13: 9780471375661

DOWNLOAD EBOOK →

A comprehensive, modern account of the flow of inviscid incompressible fluids This one-stop resource for students, instructors, and professionals goes beyond analytical solutions for irrotational fluids to provide practical answers to real-world problems involving complex boundaries. It offers extensive coverage of vorticity transport as well as computational methods for inviscid flows, and it provides a solid foundation for further studies in fluid dynamics. Inviscid Incompressible Flow supplies a rigorous introduction to the continuum mechanics of fluid flows. It derives vector representation theorems, develops the vorticity transport theorem and related integral invariants, and presents theorems associated with the pressure field. This self-contained sourcebook describes both solution methods unique to two-dimensional flows and methods for axisymmetric and three-dimensional flows, many of which can be applied to two-dimensional flows as a special case. Finally, it examines perturbations of equilibrium solutions and ensuing stability issues. Important features of this powerful, timely volume include: * Focused, comprehensive coverage of inviscid incompressible fluids * Four entire chapters devoted to vorticity transport and solution of vortical flows * Theorems and computational methods for two-dimensional, axisymmetric, and three-dimensional flows * A companion Web site containing subroutines for calculations in the book * Clear, easy-to-follow presentation Inviscid Incompressible Flow, the only all-in-one presentation available on this topic, is a first-rate teaching and learning tool for graduate- and senior undergraduate-level courses in inviscid fluid dynamics. It is also an excellent reference for professionals and researchers in engineering, physics, and applied mathematics.

Vortex Flows and Related Numerical Methods

Vortex Flows and Related Numerical Methods PDF

Author: J.T. Beale

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 385

ISBN-13: 9401581371

DOWNLOAD EBOOK →

Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.

Electrically Induced Vortical Flows

Electrically Induced Vortical Flows PDF

Author: V. Bojarevi°s

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 392

ISBN-13: 9400911637

DOWNLOAD EBOOK →

Every scientific subject probably conceals unexplored or little investigated strata, which may show up at the proper time when favourable conditions coincide (practical demands, a circle of scientists prepared to recognize the novelty and capable of giving impetus to the development of a new theory, etc.). Something like this occurred in early seventies for magnetohydrodynamics, which at the time was considered to be a relatively complete branch of hydro dynamics with no apparent broad, unexplored areas. It was unexpectedly realized that, in addition to the traditional methods of affecting an electrically conducting medium, there is yet another way, one which subsequently lead to a new direction in magnetohydrodynamics. In the Soviet scientific literature this direction has been termed 'electrically induced vortex flows', the essence of which are hydrodynamic effects due to the interaction of an electric current passing through the fluid with its own magnetic field. It cannot be said that this direction was created ex nihilo: individual studies related to the flows driven in a current-carrying medium in the absence of external magnetic fields appeared in the sixties; in the thirties the flows them selves were known to take place within electrical arcs; and yet the first observa tions on the behaviour of liquid current-carrying conductors were made at the beginning of this century.