Vibration of Functionally Graded Beams and Plates

Vibration of Functionally Graded Beams and Plates PDF

Author: Snehashish Chakraverty

Publisher: Academic Press

Published: 2016-02-11

Total Pages: 253

ISBN-13: 0128042702

DOWNLOAD EBOOK →

Vibration of Functionally Graded Beams and Plates uses numerically efficient computational techniques to analyze vibration problems associated with FG beams and plates. Introductory material on FG materials and structural members, as well as a range of vibration and shear deformation theories are discussed, providing a valuable summary of these broader themes. The latest research and analysis of vibration in FG materials is presented in an application-oriented manner, linking the research to its importance in fields such as aerospace, nuclear power, and automotive engineering. The book also features research on the complicating effects of thermal environments, piezoelectricity, and elastic foundations. The innovative computational procedures and simulation results are shown in full throughout, providing a uniquely valuable resource for users of numerical modeling software. This book is essential reading for any researcher or practitioner interested in FG materials, or the design of technology for the nuclear power, aerospace, and automotive industries. Defines the basic preliminaries of vibration and FG materials Introduces historical background and recent developments in functionally graded materials with references for further reading Shows computational procedures with simulation results Includes many easy to understand example problems Presents various analytical and numerical procedures for each solution

Mechanics of Functionally Graded Materials and Structures

Mechanics of Functionally Graded Materials and Structures PDF

Author: Farzad Ebrahimi

Publisher: BoD – Books on Demand

Published: 2020-01-08

Total Pages: 128

ISBN-13: 1789845548

DOWNLOAD EBOOK →

The Functionally Graded Materials (FGM) concept originated in Japan in 1984 during the spaceplane project, in the form of a proposed thermal barrier material capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 K across a cross section 10 mm. The materials can be designed for specific function and applications. FGMs offer great promise in applications where the operating conditions are extreme. For example, wear-resistant linings for handling large, heavy, abrasive ore particles; rocket heat shields; heat exchanger tubes; thermoelectric generators; heat-engine components; plasma facings for fusion reactors; and electrically insulating metal/ceramic joints. They are also ideal for minimizing thermomechanical mismatch in metal-ceramic bonding. This book is a result of contributions of experts from the international scientific community working in different aspects of functionally graded materials and structures and reports on the latest research and development findings on this topic through original and innovative research studies. Through its six chapters, the reader will have access to works related to processing, characteristics, modeling, and applications of functionally graded materials and structures.The book contains up-to-date publications from leading experts and the edition is intended to provide valuable recent information to the professionals involved in functionally graded materials and structure analysis and applications. The text is addressed not only to researchers, but also to professional engineers, students, and other experts in a variety of disciplines, both academic and industrial, seeking to gain a better understanding of what has been done in the field recently, and what open problems are in this area.

Beam Structures

Beam Structures PDF

Author: Erasmo Carrera

Publisher: John Wiley & Sons

Published: 2011-07-28

Total Pages: 171

ISBN-13: 1119951046

DOWNLOAD EBOOK →

Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.

Methods of Analytical Dynamics

Methods of Analytical Dynamics PDF

Author: Leonard Meirovitch

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 544

ISBN-13: 0486137597

DOWNLOAD EBOOK →

Encompassing formalism and structure in analytical dynamics, this graduate-level text discusses fundamentals of Newtonian and analytical mechanics, rigid body dynamics, problems in celestial mechanics and spacecraft dynamics, more. 1970 edition.

New Paradigms in Computational Modeling and Its Applications

New Paradigms in Computational Modeling and Its Applications PDF

Author: Snehashish Chakraverty

Publisher: Academic Press

Published: 2021-01-09

Total Pages: 280

ISBN-13: 0128221682

DOWNLOAD EBOOK →

In general, every problem of science and engineering is governed by mathematical models. There is often a need to model, solve and interpret the problems one encounters in the world of practical problems. Models of practical application problems usually need to be handled by efficient computational models. New Paradigms in Computational Modeling and Its Applications deals with recent developments in mathematical methods, including theoretical models as well as applied science and engineering. The book focuses on subjects that can benefit from mathematical methods with concepts of simulation, waves, dynamics, uncertainty, machine intelligence, and applied mathematics. The authors bring together leading-edge research on mathematics combining various fields of science and engineering. This perspective acknowledges the inherent characteristic of current research on mathematics operating in parallel over different subject fields. New Paradigms in Computational Modeling and Its Applications meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of mathematics on the other. As such, the book contains 13 chapters covering various aspects of computational modeling from theoretical to application problems. The first six chapters address various problems of structural and fluid dynamics. The next four chapters include solving problems where the governing parameters are uncertain regarding fuzzy, interval, and affine. The final three chapters will be devoted to the use of machine intelligence in artificial neural networks. Presents a self-contained and up to date review of modelling real life scientific and engineering application problems Introduces new concepts of various computing techniques to handle different engineering and science problems Demonstrates the efficiency and power of the various algorithms and models in a simple and easy to follow style, including numerous examples to illustrate concepts and algorithms

Linear Theory

Linear Theory PDF

Author: A. Cemal Eringen

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 676

ISBN-13: 1483276716

DOWNLOAD EBOOK →

Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subject to more precise mathematical analysis compared to three-dimensional situations by using scalar wave equations. The text then analyzes elastodynamic problems in three space dimensions when the solution depends on the condition of separability of the vector wave equation and the satisfaction of the boundary conditions. The diffraction of elastic waves is also described using two approaches: the integral equation method or the Eigen function technique. The book can prove valuable to researchers and practitioners whose work involves advanced statistics, general physics, and thermodynamics.

Shear Deformable Beams and Plates

Shear Deformable Beams and Plates PDF

Author: C.M. Wang

Publisher: Elsevier

Published: 2000-07-19

Total Pages: 311

ISBN-13: 0080541151

DOWNLOAD EBOOK →

Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the classical theory. Equations governing shear deformation theories are typically more complicated than those of the classical theory. Hence it is desirable to have exact relationships between solutions of the classical theory and shear deformation theories so that whenever classical theory solutions are available, the corresponding solutions of shear deformation theories can be readily obtained. Such relationships not only furnish benchmark solutions of shear deformation theories but also provide insight into the significance of shear deformation on the response. The relationships for beams and plates have been developed by many authors over the last several years. The goal of this monograph is to bring together these relationships for beams and plates in a single volume. The book is divided into two parts. Following the introduction, Part 1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of Chapters 6 to 13 covering plates. Problems are included at the end of each chapter to use, extend, and develop new relationships.

Computational Structural Mechanics

Computational Structural Mechanics PDF

Author: Snehashish Chakraverty

Publisher: Academic Press

Published: 2018-09-13

Total Pages: 336

ISBN-13: 0128156422

DOWNLOAD EBOOK →

Computational Structural Mechanics: Static and Dynamic Behaviors provides a cutting-edge treatment of functionally graded materials and the computational methods and solutions of FG static and vibration problems of plates. Using the Rayleigh-Ritz method, static and dynamic problems related to behavior of FG rectangular, Levy, elliptic, skew and annular plates are discussed in detail. A thorough review of the latest research results, computational methods and applications of FG technology make this an essential resource for researchers in academia and industry. Explains application-oriented treatments of the functionally graded materials used in industry Addresses relevant algorithms and key computational techniques Provides numerical solutions of static and vibration problems associated with functionally graded beams and plates of different geometries

Mechanics of Functionally Graded Material Structures

Mechanics of Functionally Graded Material Structures PDF

Author: Isaac E. T. Al ELISHAKOFF

Publisher: World Scientific

Published: 2015-10-29

Total Pages: 340

ISBN-13: 9814656593

DOWNLOAD EBOOK →

Mechanics of Functionally Graded Material Structures is an authoritative and fresh look at various functionally graded materials, customizing them with various structures. The book is devoted to tailoring material properties to the needed structural performance. The authors pair materials with the appropriate structures based upon their purpose and use.Material grading of structures depending upon thickness, axial and polar directions are discussed. Three dimensional analysis of rectangular plates made of functional graded materials and vibrational tailoring of inhomogeneous beams and circular plates are both covered in great detail. The authors derive novel closed form solutions that can serve as benchmarks that numerical solutions can be compared to. These are published for the first time in the literature. This is a unique book that gives the first exposition of the effects of various grading mechanisms on the structural behavior as well as taking into account vibrations and buckling.

New Trends in Nonlinear Dynamics

New Trends in Nonlinear Dynamics PDF

Author: Walter Lacarbonara

Publisher: Springer Nature

Published: 2020-01-27

Total Pages: 350

ISBN-13: 3030347249

DOWNLOAD EBOOK →

This third of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to New Trends in Nonlinear Dynamics. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume III include NEMS/MEMS and nanomaterials: multi-sensors, actuators exploiting nonlinear working principles; adaptive, multifunctional, and meta material structures; nanocomposite structures (e.g., carbon nanotube/polymer composites, composites with functionalized nanoparticles); 0D,1D,2D,3D nanostructures; biomechanics applications, DNA modeling, walking dynamics, heart dynamics, neurodynamics, capsule robots, jellyfish-like robots, nanorobots; cryptography based on chaotic maps; ecosystem dynamics, social media dynamics (user behavior dynamics in multi-messages social hotspots, prediction models), financial engineering, complexity in engineering; and network dynamics (multi-agent systems, leader-follower dynamics, swarm dynamics, biological networks dynamics).