Vibration Control of Vehicle Suspension Systems

Vibration Control of Vehicle Suspension Systems PDF

Author: Haiping Du

Publisher: CRC Press

Published: 2023-12-18

Total Pages: 323

ISBN-13: 1000999297

DOWNLOAD EBOOK →

This book covers complex issues for a vehicle suspension model, including non-linearities and uncertainties in a suspension model, network-induced time delays, and sampled-data model from a theoretical point of view. It includes control design methods such as neural network supervisory, sliding mode variable structure, optimal control, internal-model principle, feedback linearization control, input-to-state stabilization, and so on. Every control method is applied to the simulation for comparison and verification. Features: Includes theoretical derivation, proof, and simulation verification combined with suspension models Provides the vibration control strategies for sampled-data suspension models Focuses on the suspensions with time-delays instead of delay-free Covers all the models related to quarter-, half-, and full-vehicle suspensions Details rigorous mathematical derivation process for each theorem supported by MATLAB®-based simulation This book is aimed at researchers and graduate students in automotive engineering, vehicle vibration, mechatronics, control systems, applied mechanics, and vehicle dynamics.

Vibration Control of Vehicle Suspension Systems

Vibration Control of Vehicle Suspension Systems PDF

Author: Haiping Du

Publisher:

Published: 2024

Total Pages: 0

ISBN-13: 9781032208787

DOWNLOAD EBOOK →

"This book covers complex issues for a vehicle suspension model including non-linearities and uncertainties in a suspension model, network-induced time delays, and sampled-data model from a theoretical point of view. It includes control design methods as neural network supervisory, sliding mode variable structure, and optimal control, internal-model principle, feedback linearization control, input-to-state stabilization, and so forth. Every control method is applied to simulation for comparison and verification. Features: Includes theoretical derivation, proof, and simulation verification combined with suspension models Provides the vibration control strategies for sampled-data suspension models Focuses on the suspensions with time-delays instead of delay-free Covers all the models related to quarter, half, and full-vehicle suspensions Details rigorous mathematical derivation process for each theorem supported by MATLAB® based simulation This book is aimed at researchers and graduate students in automotive engineering, vehicle vibration, mechatronics, control systems, applied mechanics, and vehicle dynamics"--

Applications of MATLAB in Science and Engineering

Applications of MATLAB in Science and Engineering PDF

Author: Tadeusz Michalowski

Publisher: BoD – Books on Demand

Published: 2011-09-09

Total Pages: 526

ISBN-13: 9533077085

DOWNLOAD EBOOK →

The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest.

Intelligent Robotics and Applications

Intelligent Robotics and Applications PDF

Author: Caihua Xiong

Publisher: Springer Science & Business Media

Published: 2008-09-29

Total Pages: 1288

ISBN-13: 3540885161

DOWNLOAD EBOOK →

This two volumes constitute the refereed proceedings of the First International Conference on Intelligent Robotics and Applications, ICIRA 2008, held in Wuhan, China, in October 2008. The 265 revised full papers presented were thoroughly reviewed and selected from 552 submissions; they are devoted but not limited to robot motion planning and manipulation; robot control; cognitive robotics; rehabilitation robotics; health care and artificial limb; robot learning; robot vision; human-machine interaction & coordination; mobile robotics; micro/nano mechanical systems; manufacturing automation; multi-axis surface machining; realworld applications.

Handbook of Vehicle Suspension Control Systems

Handbook of Vehicle Suspension Control Systems PDF

Author: Honghai Liu

Publisher: IET

Published: 2013-11-22

Total Pages: 423

ISBN-13: 1849196338

DOWNLOAD EBOOK →

Handbook of Vehicle Suspension Control Systems surveys the state-of-art in advanced suspension control theory and applications, with an overview of intelligent vehicle active suspension adaptive control systems, and robust active control of an integrated suspension system, amongst many others.

Semi-active Suspension Control

Semi-active Suspension Control PDF

Author: Emanuele Guglielmino

Publisher: Springer Science & Business Media

Published: 2008-05-27

Total Pages: 302

ISBN-13: 1848002319

DOWNLOAD EBOOK →

Semi-active Suspension Control provides an overview of vehicle ride control employing smart semi-active damping systems. These systems are able to tune the amount of damping in response to measured vehicle-ride and handling indicators. Two physically different dampers (magnetorheological and controlled-friction) are analysed from the perspectives of mechatronics and control. Ride comfort, road holding, road damage and human-body modelling are studied. Mathematical modelling is balanced by a large and detailed section on experimental implementation, where a variety of automotive applications are described offering a well-rounded view. The implementation of control algorithms with regard to real-life engineering constraints is emphasised. The applications described include semi-active suspensions for a saloon car, seat suspensions for vehicles not equipped with a primary suspension, and control of heavy-vehicle dynamic-tyre loads to reduce road damage and improve handling.

Advanced Control for Vehicle Active Suspension Systems

Advanced Control for Vehicle Active Suspension Systems PDF

Author: Weichao Sun

Publisher: Springer

Published: 2019-03-13

Total Pages: 231

ISBN-13: 3030157857

DOWNLOAD EBOOK →

This book focuses on most recent theoretical findings on control issues for active suspension systems. The authors first introduce the theoretical background of active suspension control, then present constrained H∞ control approaches of active suspension systems in the entire frequency domain, focusing on the state feedback and dynamic output feedback controller in the finite frequency domain which people are most sensitive to. The book also contains nonlinear constrained tracking control via terminal sliding-mode control and adaptive robust theory, presenting controller design of active suspensions as well as the reliability control of active suspension systems. The target audience primarily comprises research experts in control theory, but the book may also be beneficial for graduate students alike.

Vibration Control and Actuation of Large-Scale Systems

Vibration Control and Actuation of Large-Scale Systems PDF

Author: Hamid Reza Karimi

Publisher: Academic Press

Published: 2020-05-20

Total Pages: 410

ISBN-13: 0128211989

DOWNLOAD EBOOK →

Vibration Control and Actuation of Large-Scale Systems gives a systematically and self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring advanced vibration control systems. The book is devoted to the development of mathematical methodologies for vibration analysis and control problems of large-scale systems, including structural dynamics, vehicle dynamics and wind turbines, for example. The research problems addressed in each chapter are well motivated, with numerical and simulation results given in each chapter that reflect best engineering practice. Provides a series of the latest results in vibration control, structural control, actuation, component failures, and more Gives numerical and simulation results to reflect best engineering practice Presents recent advances of theory, technological aspects, and applications of advanced control methodologies in vibration control

Semi-Active Suspension Control Design for Vehicles

Semi-Active Suspension Control Design for Vehicles PDF

Author: Sergio M. Savaresi

Publisher: Elsevier

Published: 2010-08-13

Total Pages: 241

ISBN-13: 0080966799

DOWNLOAD EBOOK →

Semi-Active Suspension Control Design for Vehicles presents a comprehensive discussion of designing control algorithms for semi-active suspensions. It also covers performance analysis and control design. The book evaluates approaches to different control theories, and it includes methods needed for analyzing and evaluating suspension performances, while identifying optimal performance bounds. The structure of the book follows a classical path of control-system design; it discusses the actuator or the variable-damping shock absorber, models and technologies. It also models and discusses the vehicle that is equipped with semi-active dampers, and the control algorithms. The text can be viewed at three different levels: tutorial for novices and students; application-oriented for engineers and practitioners; and methodology-oriented for researchers. The book is divided into two parts. The first part includes chapters 2 to 6, in which fundamentals of modeling and semi-active control design are discussed. The second part includes chapters 6 to 8, which cover research-oriented solutions and case studies. The text is a comprehensive reference book for research engineers working on ground vehicle systems; automotive and design engineers working on suspension systems; control engineers; and graduate students in control theory and ground vehicle systems. Appropriate as a tutorial for students in automotive systems, an application-oriented reference for engineers, and a control design-oriented text for researchers that introduces semi-active suspension theory and practice Includes explanations of two innovative semi-active suspension strategies to enhance either comfort or road-holding performance, with complete analyses of both Also features a case study showing complete implementation of all the presented strategies and summary descriptions of classical control algorithms for controlled dampers

Control of Vehicle Suspension Systems and Its Extension to General Vibration Systems

Control of Vehicle Suspension Systems and Its Extension to General Vibration Systems PDF

Author: Panshuo Li

Publisher:

Published: 2017-01-26

Total Pages:

ISBN-13: 9781361042106

DOWNLOAD EBOOK →

This dissertation, "Control of Vehicle Suspension Systems and Its Extension to General Vibration Systems" by Panshuo, Li, 李攀碩, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis is concerned with the vibration attenuation problem of vehicle suspension systems and its extension to general vibration systems. Two research themes are considered: control methods for vehicle suspension systems and stability, performance analysis, and controller design for periodic piecewise linear systems. For vehicle suspension, control methods are proposed in order to improve ride quality, ensure ride safety and avoid structural damage. First, an adaptive suspension is designed with adjustable inerter, which can adaptively adjust its inertance. An H2 controller aiming at improving the suspension performances is designed to formulate the objective control input. The adjustable inerter adaptively varies its inertance under control to track this objective. Since the inerter cannot exert force to the system, which results in sub-optimal suspension performance, an active suspension with wheelbase preview is designed to enhance the performances. A multi-objective schme aiming at improving ride quality as far as possible subject to acceptable ride safety, avoiding structural damage and actuator saturation, is proposed for a half-car vehicle suspension model. Static output-feedback control is considered from an implementation point of view and an algorithm is presented to obtain the controller gain. Considering that the vehicle velocity may be uncertain or time-varying in practice, a multi-objective velocity-dependent controller is designed as an improved scheme. To treat the velocity as uncertainty or a time-varying parameter, robust controllers developed using homogeneous polynomial parameter-dependent approach and linear parameter-varying approach are proposed. Finally, a more realistic nonlinear full-car system with unknown dynamics characteristics is considered. Based on the successful application on a quarter-car test rig with active disturbance rejection control (ADRC), motion based ADRC is proposed to stabilize the vehicle body of the full-car model. Full-car dynamics are extracted as three interconnected subsystems, considering the heave, pitch, and roll motions. For each subsystem, an extended state observer is established to observe the total disturbance which captures the unknown internal dynamics and external excitation. A PD / Fuzzy-PD controller is constructed for the subsystem after compensating the total disturbance. Four actuator inputs are obtained in real time according to the three motion based controller outputs. For periodic piecewise linear systems, stability, stabilization, performance indices and controller design problems are investigated. First, two sufficient, and one necessary conditions concerning the exponential stability of periodic piecewise linear system with possibly non-Hurwitz subsystems are proposed. To facilitate the performance analysis and controller synthesis, a stability condition is established by employing continuous time-varying Lyapunov function. Based on the stability result, L2-gain and generalized H2 performance criteria are developed as well. By considering a more general formulation of Lyapunov function, that is, discontinuous Lyapunov function with time-varying Lyapunov matrix, stability, stabilization and L2-gain performance are studied by allowing the proposed Lypuanov function to be possibly non-monotonically decreasing over a period. A corresponding algorithm for the stabilizing controller is presented t