Developmental Patterning of the Vertebrate Limb

Developmental Patterning of the Vertebrate Limb PDF

Author: J.Richard Hinchliffe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 434

ISBN-13: 1461533104

DOWNLOAD EBOOK →

Following pioneering work by Harrison on amphibian limbs in the 1920s and by Saunders (1948) on the apical ridge in chick limbs, limb development became a classical model system for investigating such fundamental developmental issues as tissue interactions and induction, and the control of pattern formation. Earlier international conferences, at Grenoble 1972, Glasgow 1976,and Storrs, Connecticut 1982, reflected the interests and technology of their time. Grenoble was concerned with ectoderm-mesenchyme interaction, but by the time of the Glasgow meeting, the zone of polarizing activity (ZPA) and its role in control of patterning was the dominant theme. Storrs produced the first intimations that the ZPA could be mimicked by retinoic acid (RA), but the diversity of extracellular masrix ~olecules,particularly in skeletogenesis,was the main focus of attention. By 1990, the paradigms had again shifted. Originally, the planners of the ARW saw retinoic acid (as a possible morphogen controlling skeletal patterning), the variety of extracellular matrix components and their roles, and the developmental basis of limb evolution as the leading contemporary topics. However, as planning proceeded, it was clear that the new results emerging from the use of homeobox gene probes (first developed to investigate the genetic control of patterning of Drosophila embryos) to analyse the localised expression of "patterning genes" in limb buds would also be an important theme.

HOX Gene Expression

HOX Gene Expression PDF

Author: Spyros Papageorgiou

Publisher: Springer Science & Business Media

Published: 2007-08-28

Total Pages: 158

ISBN-13: 0387689907

DOWNLOAD EBOOK →

Hox Gene Expression starts with the amazing discovery of the homeobox twenty-three years ago and follows the exciting path thereafter of a series of breakthroughs in Genetics, Development and Evolution. It deals with homeotic genes, their evolution, structure, normal and abnormal function. Researchers and graduate students in biology and medicine will benefit from this integrated overview of Hox gene activities.

Building the Most Complex Structure on Earth

Building the Most Complex Structure on Earth PDF

Author: Nelson R Cabej

Publisher: Newnes

Published: 2013-04-01

Total Pages: 313

ISBN-13: 0124017290

DOWNLOAD EBOOK →

Building the Most Complex Structure on Earth provides readers with a basic biological education an easy and understandable introduction into a new epigenetic theory of development and evolution. This is a novel theory that describes the epigenetic mechanisms of the development and evolution of animals and explains the colossal evolution and diversification of animals from a new post-genetic perspective. Modern biology has demonstrated the existence of a common genetic toolkit in the animal kingdom, but neither the number of genes nor the evolution of new genes is responsible for the development and evolution of animals. The failure to understand how the same genetic toolkit is used to produce millions of widely different animal forms remains a perplexing conundrum in modern biology. The novel theory shows that the development and evolution of the animal kingdom are functions of epigenetic mechanisms, which are the competent users of the genetic toolkit. Provides a comprehensive view of the epigenetic aspects of reproduction, development, and evolution. Highly rigorous, but simple enough for readers with only a basic knowledge of biology.