Vertebrate Eye Development

Vertebrate Eye Development PDF

Author: M. Elizabeth Fini

Publisher: Springer Science & Business Media

Published: 2012-09-07

Total Pages: 431

ISBN-13: 3540468269

DOWNLOAD EBOOK →

"Who would believe that so small a space could contain the images of all the universe?" Leonardo da Vinci The last years of the 20th century have found the discipline of Developmental Biology returning to its original position at the forefront of biological re search. This progress can be attributed to the burgeoning knowledge base on molecules and gene families, and to the power of the molecular genetic ap proach. Topping the list of organ systems which have provided the most significant advances would have to be the eye. The vertebrate eye was one of the classic embryologic models, used to demonstrate many important prin ciples, including the concepts of inductive tissue interactions first put forth in the early 1900s. Within the last decade of this century, a return to some of the old questions with the new approaches has put eye development back into the limelight. I find this a highly appropriate topic for a book which aims to spark research for the new millennium. We begin with a chapter that discusses the anatomy of eye development, providing the basic reference information for the chapters that follow. A novel aspect of this introduction is the connection made between develop mental strategies and the eye's optical function. What also emerges from this chapter is the number of important eye structures that have barely been touched by the modern developmental biologist. Work on cornea and ante rior chamber development has lagged behind lens and retina.

Invertebrate and Vertebrate Eye Development

Invertebrate and Vertebrate Eye Development PDF

Author:

Publisher: Academic Press

Published: 2010-11-24

Total Pages: 312

ISBN-13: 9780123850454

DOWNLOAD EBOOK →

Vision is our primary sensory modality, and we are naturally curious as to how the visual system assembles. The visual system is in many ways remarkably simple, a repeating assemblage of neurons and support cells that parse the visual field through precision and redundancy. Through this simplicity the eye has often led the way in our exploration of how an organ is assembled. Eye development has therefore long been a favorite for exploring mechanisms of cell fate choice, patterning and cell signaling. This volume, which is part of the Current Topics in Developmental Biology series, highlights the exceptional advances over the past 20 years. Chapters emphasize our knowledge of transcription factors and how these generate networks to direct the eye field and associated structures. Topics such as cell fate specification are also explored, along with the potential of Drosophila as a model for lens formation and the progress made in using the Drosophila eye to examine planar cell polarity. Contributions from researchers who are active in identifying new paradigms to explore Review of our current state of knowledge Chapters written by authors with a new generation approach that takes a more systems approach to identifying factors and better defines cell subtypes

Drosophila Eye Development

Drosophila Eye Development PDF

Author: Kevin Moses

Publisher: Springer Science & Business Media

Published: 2002-03-12

Total Pages: 296

ISBN-13: 9783540425908

DOWNLOAD EBOOK →

1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.

Development of the Vertebrate Retina

Development of the Vertebrate Retina PDF

Author: Barbara L. Finlay

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 300

ISBN-13: 1468455923

DOWNLOAD EBOOK →

The vertebrate retina has a form that is closely and clearly linked to its func tion. Though its fundamental cellular architecture is conserved across verte brates, the retinas of individual species show variations that are also of clear and direct functional utility. Its accessibility, readily identifiable neuronal types, and specialized neuronal connectivity and morphology have made it a model system for researchers interested in the general questions of the genet ic, molecular, and developmental control of cell type and shape. Thus, the questions asked of the retina span virtually every domain of neuroscientific inquiry-molecular, genetic, developmental, behavioral, and evolutionary. Nowhere have the interactions of these levels of analysis been more apparent and borne more fruit than in the last several years of study of the develop ment of the vertebrate retina. Fields of investigation have a natural evolution, rdoving through periods of initial excitement, of framing of questions and controversy, to periods of synthesis and restatement of questions. The study of the development of the vertebrate retina appeared to us to have reached such a point of synthesis. Descriptive questions of how neurons are generated and deployed, and ques tions of mechanism about the factors that control the retinal neuron's type and distribution and the conformation of its processes have been posed, and in good part answered. Moreover, the integration of cellular accounts of development with genetic, molecular, and whole-eye and behavioral accounts has begun.

The Visual System in Vertebrates

The Visual System in Vertebrates PDF

Author: F. Crescitelli

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 816

ISBN-13: 3642664687

DOWNLOAD EBOOK →

The vertebrate eye has been, and continues to be, an object of interest and of inquiry for biologists, physicists, chemists, psychologists, and others. Quite apart from its important role in the development of ophthalmology and related medical disciplines, the vertebrate eye is an exemplar of the ingenuity of living systems in adapting to the diverse and changing environments in which vertebrates have evolved. The wonder is not so much that the visual system, like other body systems, has been able to adapt in this way, but rather that these adaptations have taken such a variety of forms. In a previous volume in this series (VII/I) Eakin expressed admiration for the diversity of invertebrate photoreceptors. A comparable situation exists for the vertebrate eye as a whole and one object of this volume is to present to the reader the nature of this diversity. One result of this diversification of ocular structures and properties is that the experimental biologist has available a number of systems for study that are unique or especially favorable for the investigation of particular questions in visual science or neurobiology. This volume includes some examples of progress made by the use of such specially selected vertebrate systems. It is our hope that this comparative approach will continue to reveal new and useful preparations for the examination of important questions.

Vision in Vertebrates

Vision in Vertebrates PDF

Author: M. A. Ali

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 274

ISBN-13: 1468491296

DOWNLOAD EBOOK →

When Dr. Katherine Tansley's "Vision in Vertebrates" appeared in 1965, it filled a real void that had hitherto existed. It did so by serving at once as a text-book: for an undergraduate course, a general introduction to the subject for post-graduate students embarking on research on some aspect of vision, and the interested non-specialists. Gordon Walls' "The Vertebrate Eye and It. s Adaptive Radiation" and A. Rochon-Duvigneaud's "Les Yeux et la Vision des Vertebres" have served as important sources of information on the subject and continue to do so even though it is 40 years since they appeared. However, they are essentially specialised reference works and are not easily accessible to boot. The genius of Katherine Tansley was to present in a succinct (132 pages) and lucid way a clear and an interesting survey of the matter. Everyone liked it, particularly the students because one could read it quickly and understand it. Thus, when it seemed that a new edition was desirable, especially in view of the enormous strides made and the vast literature that had accumulated in the past 20 years, one of us (MAA) asked Dr. Tansley if she would undertake the task. Since she is in retirement and her health not in a very satisfactory state both she and her son, John Lythgoe (himself a specialist of vision), asked us to take over the task.

Vertebrate Photoreceptors

Vertebrate Photoreceptors PDF

Author: Takahisa Furukawa

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9784431563358

DOWNLOAD EBOOK →

This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.

The Embryonic Development of Drosophila melanogaster

The Embryonic Development of Drosophila melanogaster PDF

Author: Jose A. Campos-Ortega

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 237

ISBN-13: 3662024543

DOWNLOAD EBOOK →

" . . . but our knowledge is so weak that no philosoph er will ever be able to completely explore the nature of even a fly . . . " * Thornas Aquinas "In Syrnbolurn Apostolorum" 079 RSV p/96 This is a monograph on embryogenesis of the fruit fly Drosophi la melanogaster conceived as a reference book on morphology of embryonie development. A monograph of this extent and con tent is not yet available in the literature of Drosophila embryolo gy, and we believe that there is areal need for it. Thanks to the progress achieved during the last ten years in the fields of devel opmental and molecular genetics, work on Drosophila develop ment has considerably expanded creating an even greater need for the information that we present here. Our own interest for wildtype embryonie development arose several years ago, when we began to study the development of mutants. While those studies were going on we repeatedly had occasion to state in sufficiencies in the existing literature about the embryology of the wildtype, so that we undertook investigating many of these problems by ourselves. Convinced that several of our colleagues will have encountered similar difficulties we decided to publish the present monograph. Although not expressely recorded, Thomas Aquinas probably referred to the domestic fly and not to the fruit fly. Irrespective of which fly he meant, however, we know that Thomas was right in any case.