Variable Density Fluid Turbulence

Variable Density Fluid Turbulence PDF

Author: P. Chassaing

Publisher: Springer Science & Business Media

Published: 2002-05-31

Total Pages: 400

ISBN-13: 9781402006715

DOWNLOAD EBOOK →

The first part aims at providing the physical and theoretical framework of the analysis of density variations in fully turbulent flows. Its scope is deliberately educational. In the second part, basic data on dynamical and scalar properties of variable density turbulent flows are presented and discussed, based on experimental data and/or results from direct numerical simulations. This part is rather concerned with a research audience. The last part is more directly devoted to an engineering audience and deals with prediction methods for turbulent flows of variable density fluid. Both first and second order, single point modeling are discussed, with special emphasis on the capability to include specific variable density / compressibility effects.

Variable Density Fluid Turbulence

Variable Density Fluid Turbulence PDF

Author: P. Chassaing

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 387

ISBN-13: 9401700753

DOWNLOAD EBOOK →

The first part aims at providing the physical and theoretical framework of the analysis of density variations in fully turbulent flows. Its scope is deliberately educational. In the second part, basic data on dynamical and scalar properties of variable density turbulent flows are presented and discussed, based on experimental data and/or results from direct numerical simulations. This part is rather concerned with a research audience. The last part is more directly devoted to an engineering audience and deals with prediction methods for turbulent flows of variable density fluid. Both first and second order, single point modeling are discussed, with special emphasis on the capability to include specific variable density / compressibility effects.

Variable Density Fluid Turbulence

Variable Density Fluid Turbulence PDF

Author: P. Chassaing

Publisher: Springer

Published: 2014-03-14

Total Pages: 382

ISBN-13: 9789401700764

DOWNLOAD EBOOK →

The first part aims at providing the physical and theoretical framework of the analysis of density variations in fully turbulent flows. Its scope is deliberately educational. In the second part, basic data on dynamical and scalar properties of variable density turbulent flows are presented and discussed, based on experimental data and/or results from direct numerical simulations. This part is rather concerned with a research audience. The last part is more directly devoted to an engineering audience and deals with prediction methods for turbulent flows of variable density fluid. Both first and second order, single point modeling are discussed, with special emphasis on the capability to include specific variable density / compressibility effects.

Turbulent Flows

Turbulent Flows PDF

Author: G. Biswas

Publisher: CRC Press

Published: 2002

Total Pages: 478

ISBN-13: 9780849310140

DOWNLOAD EBOOK →

This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.

Turbulence in Fluids

Turbulence in Fluids PDF

Author: Marcel Lesieur

Publisher: Springer

Published: 2014-09-20

Total Pages: 0

ISBN-13: 9789401781305

DOWNLOAD EBOOK →

Now in its fully updated fourth edition, this leading text in its field is an exhaustive monograph on turbulence in fluids in its theoretical and applied aspects. The authors examine a number of advanced developments using mathematical spectral methods, direct-numerical simulations, and large-eddy simulations. The book remains a hugely important contribution to the literature on a topic of great importance for engineering and environmental applications, and presents a very detailed presentation of the field.

An Informal Conceptual Introduction to Turbulence

An Informal Conceptual Introduction to Turbulence PDF

Author: Arkady Tsinober

Publisher: Springer Science & Business Media

Published: 2009-08-29

Total Pages: 475

ISBN-13: 904813174X

DOWNLOAD EBOOK →

This fully revised second edition focuses on physical phenomena and observations in turbulence, and is focused on reversing misconceptions and ill-defined concepts. New topics include ergodicity, Eulerian versus Lagrangian descriptions, theory validation, and anomalous scaling.

An Introduction To Turbulence

An Introduction To Turbulence PDF

Author: Paul A. Libby

Publisher: CRC Press

Published: 1996-10-01

Total Pages: 370

ISBN-13: 9781560321002

DOWNLOAD EBOOK →

Beginning with a description of turbulence, its various manifestations, and a brief history of study, this text also incorporates modern perspectives on turbulence. The text also covers such topics as intermittency and the resultant conditional sampling and averaging of turbulent flows, the role of large scale computation of the fundamental equations of fluid mechanics in providing information on variables, and asymptotic methods which are used to expose important features of turbulent flows. Meaningful exercises are included in every section.

The Essence of Turbulence as a Physical Phenomenon

The Essence of Turbulence as a Physical Phenomenon PDF

Author: Arkady Tsinober

Publisher: Springer Science & Business Media

Published: 2013-08-23

Total Pages: 171

ISBN-13: 9400771800

DOWNLOAD EBOOK →

This book critically reexamines what turbulence really is, from a fundamental point of view and based on observations from nature, laboratories, and direct numerical simulations. It includes critical assessments and a comparative analysis of the key developments, their evolution and failures, along with key misconceptions and outdated paradigms. The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows, this emphasis stems from the basic premise that without corresponding progress in fundamental aspects there is little chance for progress in applications such as drag reduction, mixing, control and modeling of turbulence. More generally, there is also a desperate need to grasp the physical fundamentals of the technological processes in which turbulence plays a central role.

Handbook of Turbulence

Handbook of Turbulence PDF

Author: Walter Frost

Publisher: Springer

Published: 1977-11

Total Pages: 526

ISBN-13:

DOWNLOAD EBOOK →

Turbulence takes place in practically all flow situations that occur naturally or in modern technological systems. Therefore, considerable effort is being expended in an attempt to understand this very complex physical phenome non and to develop both empirical and mathematical models for its description. Such numerical and analytical computational schemes would allow the reliable prediction and design of turbulent flow processes to be carried out. The purpose of this book is to bring together, in a usable form, some of the fundamental concepts of turbulence along with turbulence models and experimental techniques. It is hoped that these have "general applicability" in current engineering design. The phrase "general applicabil ity" is highlighted because the theory of turbulence is still so much in a formative stage that completely general analyses are not available now, nor will they be available in the immediate future. The concepts and models described herein represent the state-of-the art methods that are now being used to give answers to turbulent flow problems. As in all turbulent flow analysis, the methods are a blend of analytical and empirical input, and the reader should be cognizant of the simplification and restrictions imposed upon the methods when applyingthem to physical situations different from those for which they have been developed.