Upscaling Multiphase Flow in Porous Media

Upscaling Multiphase Flow in Porous Media PDF

Author: D.B. Das

Publisher: Springer Science & Business Media

Published: 2005-06-10

Total Pages: 276

ISBN-13: 9781402035135

DOWNLOAD EBOOK →

This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering PDF

Author: Hans Bruining

Publisher: CRC Press

Published: 2021-11-14

Total Pages: 214

ISBN-13: 1000463303

DOWNLOAD EBOOK →

This book describes fundamental upscaling aspects of single-phase/two-phase porous media flow for application in petroleum and environmental engineering. Many standard texts have been written about this subject. What distinguishes this work from other available books is that it covers fundamental issues that are frequently ignored but are relevant for developing new directions to extend the traditional approach, but with an eye on application. Our dependence on fossil energy is 80–90% and is only slowly decreasing. Of the estimated 37 (~40) Gton/year, anthropogenic emissions of about 13 Gton/year of carbon dioxide remain in the atmosphere. An Exergy Return on Exergy Invested analysis shows how to obtain an unbiased quantification of the exergy budget and the carbon footprint. Thus, the intended audience of the book learns to quantify his method of optimization of recovery efficiencies supported by spreadsheet calculations. As to single-phase-one component fluid transport, it is shown how to deal with inertia, anisotropy, heterogeneity and slip. Upscaling requires numerical methods. The main application of transient flow is to find the reasons for reservoir impairment. The analysis benefits from solving the porous media flow equations using (numerical) Laplace transforms. The multiphase flow requires the definition of capillary pressure and relative permeabilities. When capillary forces dominate, we have dispersed (Buckley-Leverett flow). When gravity forces dominate, we obtain segregated flow (interface models). Miscible flow is described by a convection-dispersion equation. We give a simple proof that the dispersion coefficient can be approximated by Gelhar's relation, i.e., the product of the interstitial velocity, the variance of the logarithm of the permeability field and a correlation length. The book will appeal mostly to students and researchers of porous media flow in connection with environmental engineering and petroleum engineering.

Numerical Treatment of Multiphase Flows in Porous Media

Numerical Treatment of Multiphase Flows in Porous Media PDF

Author: Zhangxin Chen

Publisher: Springer Science & Business Media

Published: 2000-08-15

Total Pages: 467

ISBN-13: 3540675663

DOWNLOAD EBOOK →

The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.

Multiphase Flow in Porous Media

Multiphase Flow in Porous Media PDF

Author: P.M. Adler

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 196

ISBN-13: 9401723729

DOWNLOAD EBOOK →

The study of multiphase flow through porous media is undergoing intense development, mostly due to the recent introduction of new methods. After the profound changes induced by percolation in the eighties, attention is nowadays focused on the pore scale. The physical situation is complex and only recently have tools become available that allow significant progress to be made in the area. This volume on Multiphase Flow in Porous Media, which is also being published as a special issue of the journal Transport in Porous Media, contains contributions on the lattice-Boltzmann technique, the renormalization technique, and semi-phenomenological studies at the pore level. Attention is mostly focused on two- and three-phase flows. These techniques are of tremendous importance for the numerous applications of multiphase flows in oil fields, unsaturated soils, the chemical industry, and environmental sciences.

Multiphase Flow in Permeable Media

Multiphase Flow in Permeable Media PDF

Author: Martin J. Blunt

Publisher: Cambridge University Press

Published: 2017-02-16

Total Pages: 503

ISBN-13: 1107093465

DOWNLOAD EBOOK →

This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF

Author: Zhangxin Chen

Publisher: SIAM

Published: 2006-04-01

Total Pages: 551

ISBN-13: 0898716063

DOWNLOAD EBOOK →

This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Flowing Matter

Flowing Matter PDF

Author: Federico Toschi

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 309

ISBN-13: 3030233707

DOWNLOAD EBOOK →

This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Poromechanics II

Poromechanics II PDF

Author: J.L. Auriault

Publisher: CRC Press

Published: 2020-12-18

Total Pages: 978

ISBN-13: 1000151247

DOWNLOAD EBOOK →

These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.

Numerical Treatment of Multiphase Flows in Porous Media

Numerical Treatment of Multiphase Flows in Porous Media PDF

Author: Zhangxin Chen

Publisher: Springer

Published: 2008-01-11

Total Pages: 467

ISBN-13: 3540454675

DOWNLOAD EBOOK →

The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.