Approximate Deconvolution Models of Turbulence

Approximate Deconvolution Models of Turbulence PDF

Author: William J. Layton

Publisher: Springer

Published: 2012-01-06

Total Pages: 190

ISBN-13: 3642244092

DOWNLOAD EBOOK →

This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.

Modeling and Simulation of Turbulent Flows

Modeling and Simulation of Turbulent Flows PDF

Author: Roland Schiestel

Publisher: John Wiley & Sons

Published: 2010-01-05

Total Pages: 751

ISBN-13: 0470393467

DOWNLOAD EBOOK →

This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications PDF

Author: Tomás Chacón Rebollo

Publisher: Springer

Published: 2014-06-17

Total Pages: 530

ISBN-13: 1493904558

DOWNLOAD EBOOK →

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.

Numerical Methods in Turbulence Simulation

Numerical Methods in Turbulence Simulation PDF

Author: Robert Moser

Publisher: Elsevier

Published: 2022-11-30

Total Pages: 568

ISBN-13: 032399833X

DOWNLOAD EBOOK →

Numerical Methods in Turbulence Simulation provides detailed specifications of the numerical methods needed to solve important problems in turbulence simulation. Numerical simulation of turbulent fluid flows is challenging because of the range of space and time scales that must be represented. This book provides explanations of the numerical error and stability characteristics of numerical techniques, along with treatments of the additional numerical challenges that arise in large eddy simulations. Chapters are written as tutorials by experts in the field, covering specific both contexts and applications. Three classes of turbulent flow are addressed, including incompressible, compressible and reactive, with a wide range of the best numerical practices covered. A thorough introduction to the numerical methods is provided for those without a background in turbulence, as is everything needed for a thorough understanding of the fundamental equations. The small scales that must be resolved are generally not localized around some distinct small-scale feature, but instead are distributed throughout a volume. These characteristics put particular strain on the numerical methods used to simulate turbulent flows. Includes a detailed review of the numerical approximation issues that impact the simulation of turbulence Provides a range of examples of large eddy simulation techniques Discusses the challenges posed by boundary conditions in turbulence simulation and provides approaches to addressing them

Advanced Approaches in Turbulence

Advanced Approaches in Turbulence PDF

Author: Paul Durbin

Publisher: Elsevier

Published: 2021-07-24

Total Pages: 554

ISBN-13: 0128208902

DOWNLOAD EBOOK →

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. Covers the fundamentals of turbulence updated with recent developments Focuses on hybrid methods such as DES and wall-modeled LES Gives an updated treatment of numerical simulation and data analysis

Approximate Deconvolution Models of Turbulence

Approximate Deconvolution Models of Turbulence PDF

Author: William J. Layton

Publisher: Springer Science & Business Media

Published: 2012-01-07

Total Pages: 190

ISBN-13: 3642244084

DOWNLOAD EBOOK →

This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.

Engineering Turbulence Modelling and Experiments 5

Engineering Turbulence Modelling and Experiments 5 PDF

Author: W. Rodi

Publisher: Elsevier

Published: 2002-08-21

Total Pages: 1029

ISBN-13: 008053094X

DOWNLOAD EBOOK →

Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 145

ISBN-13: 0309046483

DOWNLOAD EBOOK →

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.