Transport and Optical Properties of Nanomaterials

Transport and Optical Properties of Nanomaterials PDF

Author: Mahi R. Singh

Publisher: American Inst. of Physics

Published: 2009-07-08

Total Pages: 570

ISBN-13: 9780735406841

DOWNLOAD EBOOK →

The conference was a forum to discuss recent developments in the growth and characterization of nano-structured materials, the synthesis of novel materials and their incorporation into devices with optical and electronic properties determined by nanoscale features, and the theoretical modeling of electronic, optical, magnetic and thermal properties of such systems.

Optical Properties And Spectroscopy Of Nanomaterials

Optical Properties And Spectroscopy Of Nanomaterials PDF

Author: Jin Zhong Zhang

Publisher: World Scientific

Published: 2009-07-21

Total Pages: 400

ISBN-13: 981446936X

DOWNLOAD EBOOK →

Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.

Optics of Nanomaterials

Optics of Nanomaterials PDF

Author: Vladimir I. Gavrilenko

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 373

ISBN-13: 1466511729

DOWNLOAD EBOOK →

While the chemistry, physics, and optical properties of simple atoms and molecules are quite well understood, this book demonstrates that there is much to be learned about the optics of nanomaterials. Through comparative analysis of the size-dependent optical response from nanomaterials, it is shown that although strides have been made in computational chemistry and physics, bridging length scales from nano to macro remains a major challenge. Organic, molecular, polymer, and biological systems are shown to be potentially useful models for assembly. Our progress in understanding the optical properties of biological nanomaterials is important driving force for a variety of applications.

Optical and Electrical Properties of Nanoscale Materials

Optical and Electrical Properties of Nanoscale Materials PDF

Author: Alain Diebold

Publisher: Springer Nature

Published: 2022-01-10

Total Pages: 495

ISBN-13: 3030803236

DOWNLOAD EBOOK →

This book covers the optical and electrical properties of nanoscale materials with an emphasis on how new and unique material properties result from the special nature of their electronic band structure. Beginning with a review of the optical and solid state physics needed for understanding optical and electrical properties, the book then introduces the electronic band structure of solids and discusses the effect of spin orbit coupling on the valence band, which is critical for understanding the optical properties of most nanoscale materials. Excitonic effects and excitons are also presented along with their effect on optical absorption. 2D materials, such as graphene and transition metal dichalcogenides, are host to unique electrical properties resulting from the electronic band structure. This book devotes significant attention to the optical and electrical properties of 2D and topological materials with an emphasis on optical measurements, electrical characterization of carrier transport, and a discussion of the electronic band structures using a tight binding approach. This book succinctly compiles useful fundamental and practical information from one of the fastest growing research topics in materials science and is thus an essential compendium for both students and researchers in this rapidly moving field.

Optical Properties of Nanostructures

Optical Properties of Nanostructures PDF

Author: Ying Fu

Publisher: Pan Stanford Publishing

Published: 2011-08-08

Total Pages: 330

ISBN-13: 9814303267

DOWNLOAD EBOOK →

This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.

Introduction to Nanomaterials and Devices

Introduction to Nanomaterials and Devices PDF

Author: Omar Manasreh

Publisher: John Wiley & Sons

Published: 2011-12-13

Total Pages: 487

ISBN-13: 0470927070

DOWNLOAD EBOOK →

An invaluable introduction to nanomaterials and their applications Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots. Written by a renowned specialist in the field, this book features: An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials Information on the application of quantum mechanics to nanomaterial structures and quantum transport Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics An in-depth look at optical, electrical, and transport properties Coverage of electronic devices and optoelectronic devices Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.

Progress in Nonlinear Nano-Optics

Progress in Nonlinear Nano-Optics PDF

Author: Shuji Sakabe

Publisher: Springer

Published: 2014-12-27

Total Pages: 301

ISBN-13: 3319122177

DOWNLOAD EBOOK →

This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.

Light Transport in Nanomaterial Systems

Light Transport in Nanomaterial Systems PDF

Author: Nathaniel J. Hogan

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

What happens as light traverses a medium composed of both traditional materials and many ($10^5-10^{12}$ $cm^{-3}$) nanoparticles? These types of systems are present in many active areas of research in the nanotechnology sphere. Examples include nanoparticles in aqueous and non-aqueous solvents during chemical synthesis or for solar energy harvesting applictions; nanoparticles embedded in homogeneous and non-homogeneous solids for photocatalysis; nanoparticles in biological tissue for medical appplications, and more. Because nanoparticles composed of a certain material can have optical properties very different from the bulk material, these types of systems also display unique optical properties. In this thesis I outline an approach to solving light transport in nanomaterial systems based on the Monte-Carlo method. This method is shown to be optimal for nanomaterial systems where the extinction coefficient is composed of relatively equal contributions of scattering and absorption. Furthermore, I show that this computational tool can be utilized to solve problems in a wide variety of fields. In plasmonic photocatalysis, where mixtures of nanoparticles are driven resonantly to efficiently catalyze chemical reactions, this method elucidates the photothermal contribution. Experimental results combined with calculations suggest that the photocatalysis of a novel antenna-reactor complex composed of an Al core and a Cu$_2$O shell is primarily from hot-electron injection. Calculations involving taking optical images of objects through mixtures of nanoparticles explain the phenomenon that absorptive particles can enhance image quality and resolution of images taken through a scattering medium. Previous reports on this effect were limited in their explanation. We show that the reduced scattering coefficient is not sufficient to explain the phenomenon. Rather, all of the optical parameters must be known independently. The addition of absorptive particles increases image qualit

Optical Properties of Functional Polymers and Nano Engineering Applications

Optical Properties of Functional Polymers and Nano Engineering Applications PDF

Author: Vaibhav Jain

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 302

ISBN-13: 1466556919

DOWNLOAD EBOOK →

This comprehensive text provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications—including L-GRIN lenses, 3D holographic displays, optical gene detection, and more. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this book emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles.

Fluorescent Nanodiamonds

Fluorescent Nanodiamonds PDF

Author: Huan-Cheng Chang

Publisher: John Wiley & Sons

Published: 2018-11-12

Total Pages: 294

ISBN-13: 1119477085

DOWNLOAD EBOOK →

The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.