Computational Toxicology

Computational Toxicology PDF

Author: John C. Lipscomb

Publisher: Elsevier Inc. Chapters

Published: 2013-06-04

Total Pages: 34

ISBN-13: 0128060441

DOWNLOAD EBOOK →

Humans are exposed to chemicals through voluntary and involuntary actions; to natural and synthetic chemicals all day, every day. Single chemical risk assessments are complex in and of themselves, and the assessment of chemical mixtures exponentially increases the complexity for toxicologists, regulators, and the public. Chemicals produce effects in biological systems which may or may not be related to their toxicity; some effects may be adaptive or may not be a direct part of their mode or mechanism of toxic action. These terms are commonly used and may be distinguished based on the level of detail implied. Mode of action usually describes the effect of a toxicant at the cellular or organ level, while mechanism of action implies an understanding of the interaction of the toxicant at the molecular level. Chemicals can have the same mode of action, but act via different mechanisms. Components in a chemical mixture are characterized by mode and/or mechanism for the purpose of grouping, described later.

Toxic Interactions

Toxic Interactions PDF

Author: Robin S. Goldstein

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 503

ISBN-13: 1483269701

DOWNLOAD EBOOK →

Toxic Interactions is a collection of papers that discusses the basic principles behind the mechanism of toxicological interactions. This book deals with interacting chemicals and their effects on certain exposed organs or molecules. Concerning discussion of the principles, contributed papers explain the role of xenobiotic biotransformation processes in inactivating reactive intermediates of toxicants. Other authors discuss the effects of endogenous molecules and the consequences of chemically induced depletion of protective agents, as well as the pharmacokinetic principles that affect chemical interactions. Several authors also review experiments on the types of chemicals that produce or increase the degree of toxicity. The text reviews the results of liver and kidney injuries from exposure to two or more chemicals, while other papers focus on lung and heart toxicity. For example, direct mechanism of cardio toxicity includes toxicity due to an increase in plasma concentrations of the compound, or as in latent cardiac toxicity that is a product of another action on another system of organs. Professors in pharmacology, practitioners of general medicine, specialists or researchers dealing with microchemistry, toxicology or drug therapy will find this reference valuable.