Topological and Algebraic Methods in Contemporary Mathematical Physics

Topological and Algebraic Methods in Contemporary Mathematical Physics PDF

Author: B. A. Dubrovin

Publisher:

Published: 2003

Total Pages: 160

ISBN-13: 9780415299190

DOWNLOAD EBOOK →

This volume is a classic survey of algebraic geometry and topological methods in various problems of mathematical physics and provides an excellent reference text for graduate students and researchers. The book is divided into three sections: the first part concerns Hamiltonian formalism and methods that generalise Morse for certain dynamical systems of physical origin; the second part presents algebraic geometry analysis of the Yang-Baxter equations for two dimensional models; part three presents the theory of multidimensional theta functions of Abel, Riemann, Poincare in a form that is elementary and convenient for applications.

Geometric and Algebraic Topological Methods in Quantum Mechanics

Geometric and Algebraic Topological Methods in Quantum Mechanics PDF

Author: G. Giachetta

Publisher: World Scientific

Published: 2005

Total Pages: 715

ISBN-13: 9812701265

DOWNLOAD EBOOK →

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.

Topology for Physicists

Topology for Physicists PDF

Author: Albert S. Schwarz

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 299

ISBN-13: 3662029987

DOWNLOAD EBOOK →

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.

Geometric And Algebraic Topological Methods In Quantum Mechanics

Geometric And Algebraic Topological Methods In Quantum Mechanics PDF

Author: Luigi Mangiarotti

Publisher: World Scientific

Published: 2005-01-27

Total Pages: 715

ISBN-13: 9814481149

DOWNLOAD EBOOK →

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.

Geometric and Topological Methods for Quantum Field Theory

Geometric and Topological Methods for Quantum Field Theory PDF

Author: Sylvie Paycha

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 272

ISBN-13: 0821840622

DOWNLOAD EBOOK →

This volume, based on lectures and short communications at a summer school in Villa de Leyva, Colombia (July 2005), offers an introduction to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. It is aimed at graduate students in physics or mathematics who might want insight in the following topics (covered in five survey lectures): Anomalies and noncommutative geometry, Deformation quantisation and Poisson algebras, Topological quantum field theory and orbifolds. These lectures are followed by nine articles on various topics at the borderline of mathematics and physics ranging from quasicrystals to invariant instantons through black holes, and involving a number of mathematical tools borrowed from geometry, algebra and analysis.

Categories in Algebra, Geometry and Mathematical Physics

Categories in Algebra, Geometry and Mathematical Physics PDF

Author: Alexei Davydov

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 482

ISBN-13: 0821839705

DOWNLOAD EBOOK →

Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.

Modern Geometry— Methods and Applications

Modern Geometry— Methods and Applications PDF

Author: B.A. Dubrovin

Publisher: Springer Science & Business Media

Published: 1985-08-05

Total Pages: 452

ISBN-13: 0387961623

DOWNLOAD EBOOK →

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Geometric, Algebraic and Topological Methods for Quantum Field Theory PDF

Author: Sylvie Payche

Publisher: World Scientific

Published: 2014

Total Pages: 378

ISBN-13: 9814460052

DOWNLOAD EBOOK →

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.