Three-phase Conversion

Three-phase Conversion PDF

Author: Graham Astbury

Publisher: Workshop Practice

Published: 2010-11

Total Pages: 0

ISBN-13: 9781854862624

DOWNLOAD EBOOK →

This text provides an invaluable source of practical guidance on how anyone can find out the type of electrical equipment they have, and how to convert it to run on a single-phase supply. It offers calculations, step-by-step instructions with photographs and diagrams and also advises on which equipment cannot be converted at all.

Unique3phase Master Book

Unique3phase Master Book PDF

Author: Douglas Arndt

Publisher:

Published: 2017-08-18

Total Pages: 132

ISBN-13: 9781974001255

DOWNLOAD EBOOK →

Three phase motors are a type of electric motor, and they power a multitude of things. You may encounter these motors in about any field you are involved in. From farmers to machine shop operators to business owners, sooner or later a three phase machine shows up. How do you handle that? If you don't have three phase the cost to get it is probably prohibitive. What's next? I have spent years running and testing various ways to run three phase motors on single phase power. There are a number of ways to make the phase conversion and you need to know the best way for your situation. I started with the phase conversion process in the early 90's. I had an industrial vacuum cleaner that I needed to run. The local electric shop brought out a rotary phase converter and it was unable to start the vacuum. I sought out and found a better way. It's called the transformer converter and it was cheap for me to build and worked great! I started selling information about how to build one. Accumulating a few thousand customers gave me more insight into what people needed. Which turned out to be more information. Over the years my teaching has morphed into a full answer to the question "How should I run my machines?" I should point out that many times my advice to people after hearing about their situation is to buy a commercial converter. I like to be right up front with people and for some, building your own is not the answer. In those cases I feel that I am guiding those people through a maze of information and steering them to the most logical conclusion. But what about the person that wants to build their own? That's where I spend quite a bit of time and pages in the book. There are only two types of converters you can build yourself: the transformer converter and the rotary converter. Which is best for your machines? I help you decide. But of course, I take it much further than that. I show you all the parameters of what you are going to run into and what you can get away with. How to balance a rotary converterDoes you power company meter really record what the rotary is using?What is the best way to raise the voltage to run motors at twice you power company volts? i detail five different ways to do that, one you have never heard of before. It's my own invention.How to make your own transformer out of commonly available cores.How to modify commercial transformers.I put special emphasis on my overseas customers and their unique needs. How to hook up the start relay.How to use capacitors and hook them up.How to build the transformer converter using either a transformer you made or a commercial transformer.Basic electrical principals and why the power company and motor manufacturers use three phase.Construction helps on how to save money putting a converter together.How to build a big welder or battery charger power supply.Using oil cooling to run larger motors with your homemade transformer.What is motor protection and how does a motor starter work?What is meant by service factor and ambient temperature and how that helps usTo help illustrate some of these points I have a link in the book to videos, only for book purchasers..A chapter detailing how you can make money in three phase conversion, not by making and selling converters on eBay but much bigger and potentially more profitable than that. This is pretty much a complete guide to running three phase motors on single phase power. It contains over 20 years of knowledge put into one master book. I hope you enjoy it and have fun with an exciting field of interest. Starting and running a 25 or 30 hp air compressor at home will get your blood flowing more than stamp collecting. This is an action hobby with thrilling results.

Three-phase AC-AC Power Converters Based on Matrix Converter Topology

Three-phase AC-AC Power Converters Based on Matrix Converter Topology PDF

Author: Paweł Szcześniak

Publisher: Springer Science & Business Media

Published: 2013-02-28

Total Pages: 182

ISBN-13: 1447148967

DOWNLOAD EBOOK →

AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Góra. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept will also be valuable to power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.

Voltage-Sourced Converters in Power Systems

Voltage-Sourced Converters in Power Systems PDF

Author: Amirnaser Yazdani

Publisher: John Wiley & Sons

Published: 2010-03-25

Total Pages: 473

ISBN-13: 0470551569

DOWNLOAD EBOOK →

Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.

Soft-Switching Technology for Three-phase Power Electronics Converters

Soft-Switching Technology for Three-phase Power Electronics Converters PDF

Author: Dehong Xu

Publisher: John Wiley & Sons

Published: 2021-12-09

Total Pages: 500

ISBN-13: 1119602556

DOWNLOAD EBOOK →

Soft-Switching Technology for Three-phase Power Electronics Converters Discover foundational and advanced topics in soft-switching technology, including ZVS three-phase conversion In Soft-Switching Technology for Three-phase Power Electronics Converters, an expert team of researchers delivers a comprehensive exploration of soft-switching three-phase converters for applications including renewable energy and distribution power systems, AC power sources, UPS, motor drives, battery chargers, and more. The authors begin with an introduction to the fundamentals of the technology, providing the basic knowledge necessary for readers to understand the following articles. The book goes on to discuss three-phase rectifiers and three-phase grid inverters. It offers prototypes and experiments of each type of technology. Finally, the authors describe the impact of silicon carbide devices on soft-switching three-phase converters, studying the improvement in efficiency and power density created via the introduction of silicon carbide devices. Throughout, the authors put a special focus on a family of zero-voltage switching (ZVS) three-phase converters and related pulse width modulation (PWM) schemes. The book also includes: A thorough introduction to soft-switching techniques, including the classification of soft-switching for three phase converter topologies, soft-switching types and a generic soft-switching pulse-width-modulation known as Edge-Aligned PWM A comprehensive exploration of classical soft-switching three-phase converters, including the switching of power semiconductor devices and DC and AC side resonance Practical discussions of ZVS space vector modulation for three-phase converters, including the three-phase converter commutation process In-depth examinations of three-phase rectifiers with compound active clamping circuits Perfect for researchers, scientists, professional engineers, and undergraduate and graduate students studying or working in power electronics, Soft-Switching Technology for Three-phase Power Electronics Converters is also a must-read resource for research and development engineers involved with the design and development of power electronics.

Design of Three-phase AC Power Electronics Converters

Design of Three-phase AC Power Electronics Converters PDF

Author: Fei "Fred" Wang

Publisher: John Wiley & Sons

Published: 2023-11-08

Total Pages: 692

ISBN-13: 1119794250

DOWNLOAD EBOOK →

DESIGN OF THREE-PHASE AC POWER ELECTRONICS CONVERTERS Comprehensive resource on design of power electronics converters for three-phase AC applications Design of Three-phase AC Power Electronics Converters contains a systematic discussion of the three-phase AC converter design considering various electrical, thermal, and mechanical subsystems and functions. Focusing on establishing converter components and subsystems models needed for the design, the text demonstrates example designs for these subsystems and for the whole three-phase AC converters considering interactions among subsystems. The design methods apply to different applications and topologies. The text presents the basics of the three-phase AC converter, its design, and the goal and organization of the book, focusing on the characteristics and models important to the converter design for components commonly used in three-phase AC converters. The authors present the design of subsystems, including passive rectifiers, inverters and active rectifiers, electromagnetic interference (EMI) filters, thermal management system, control and auxiliaries, mechanical system, and application considerations, and discuss design optimization, which presents methodology to achieve optimal design results for three-phase AC converters. Specific sample topics covered in Design of Three-phase AC Power Electronics Converters include: Models and characteristics for devices most commonly used in three-phase converters, including conventional Si devices, and emerging SiC and GaN devices Models and selection of various capacitors; characteristics and design of magnetics using different types of magnetic cores, with a focus on inductors Optimal three-phase AC converter design including design and selection of devices, AC line inductors, DC bus capacitors, EMI filters, heatsinks, and control. The design considers both steady-state and transient conditions Load and source impact converter design, such as motors and grid condition impacts For researchers and graduate students in power electronics, along with practicing engineers working in the area of three-phase AC converters, Design of Three-phase AC Power Electronics Converters serves as an essential resource for the subject and may be used as a textbook or industry reference.

Mini-Lathe

Mini-Lathe PDF

Author: Neil M Wyatt

Publisher: Crowood

Published: 2016-03-31

Total Pages: 483

ISBN-13: 1785001299

DOWNLOAD EBOOK →

The mini-lathe is a useful tool in the model engineer's workshop. With more choice than ever of more compact machines, a mini-lathe is able to accommodate a wide range of engineering requirements, projects and techniques, as well as being suitable for the novice engineer and for those with limited workshop space. Author and model engineer Neil Wyatt provides a practical guide to purchasing and using a mini-lathe, as well as examining more advanced techniques. The book includes a projects section to show the application of mini-lathe techniques. Topics covered include: choosing a mini-lathe; workshop safety and setting up the lathe; basic through to more advanced machining skills; modifications, additions and tuning of the mini-lathe. This essential reference source is aimed at the novice engineer, home metalworkers and for those with limited workshop space. Fully illustrated with 304 colour photographs.

Electrical Energy Conversion and Transport

Electrical Energy Conversion and Transport PDF

Author: George G. Karady

Publisher: John Wiley & Sons

Published: 2013-05-03

Total Pages: 695

ISBN-13: 1118498038

DOWNLOAD EBOOK →

Designed to support interactive teaching and computer assisted self-learning, this second edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important together with the deregulation of the industry. New content explores different power generation methods, including renewable energy generation (solar, wind, fuel cell) and includes new sections that discuss the upcoming Smart Grid and the distributed power generation using renewable energy generation, making the text essential reading material for students and practicing engineers.

Grid Converters for Photovoltaic and Wind Power Systems

Grid Converters for Photovoltaic and Wind Power Systems PDF

Author: Remus Teodorescu

Publisher: John Wiley & Sons

Published: 2011-07-28

Total Pages: 358

ISBN-13: 1119957206

DOWNLOAD EBOOK →

Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters

Introduction to Modern Power Electronics

Introduction to Modern Power Electronics PDF

Author: Andrzej M. Trzynadlowski

Publisher: John Wiley & Sons

Published: 2015-11-16

Total Pages: 468

ISBN-13: 1119003210

DOWNLOAD EBOOK →

Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.