THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI

THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI PDF

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-05-11

Total Pages: 627

ISBN-13:

DOWNLOAD EBOOK →

PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI

DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI PDF

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-05-03

Total Pages: 335

ISBN-13:

DOWNLOAD EBOOK →

The objective of this data science project is to analyze and predict customer behavior in the groceries market using Python and create a graphical user interface (GUI) using PyQt. The project encompasses various stages, starting from exploring the dataset and visualizing the distribution of features to RFM analysis, K-means clustering, predicting clusters with machine learning algorithms, and implementing a GUI for user interaction. The first step in this project involves exploring the dataset. We load the dataset containing information about customers' purchases in the groceries market and examine its structure. We check for missing values and perform data preprocessing if necessary, ensuring the dataset is ready for analysis. This initial exploration allows us to gain a better understanding of the data and its characteristics. Following the dataset exploration, we conduct exploratory data analysis (EDA). This step involves visualizing the distribution of different features within the dataset. By creating histograms, box plots, scatter plots, and other visualizations, we gain insights into the patterns, trends, and relationships within the data. EDA helps us identify outliers, understand feature distributions, and uncover potential correlations between variables. After the EDA phase, we move on to RFM analysis. RFM stands for Recency, Frequency, and Monetary analysis. In this step, we calculate three key metrics for each customer: recency (how recently a customer made a purchase), frequency (how often a customer made purchases), and monetary value (how much a customer spent). RFM analysis allows us to segment customers based on their purchasing behavior, identifying high-value customers and those who require re-engagement strategies. Once we have the clusters, we can utilize machine learning algorithms to predict the cluster for new or unseen customers. We train various models, including logistic regression, support vector machines, decision trees, k-nearest neighbors, random forests, gradient boosting, naive Bayes, adaboost, XGBoost, and LightGBM, on the clustered data. These models learn the patterns and relationships between customer features and their assigned clusters, enabling us to predict the cluster for new customers accurately. To evaluate the performance of our models, we utilize metrics such as accuracy, precision, recall, and F1-score. These metrics allow us to measure the models' predictive capabilities and compare their performance across different algorithms and preprocessing techniques. By assessing the models' performance, we can select the most suitable model for cluster prediction in the groceries market analysis. In addition to the analysis and prediction components, this project aims to provide a user-friendly interface for interaction and visualization. To achieve this, we implement a GUI using PyQt, a Python library for creating desktop applications. The GUI allows users to input new customer data and predict the corresponding cluster based on the trained models. It provides visualizations of the analysis results, including cluster distributions, confusion matrices, and decision boundaries. The GUI allows users to select different machine learning models and preprocessing techniques through radio buttons or dropdown menus. This flexibility empowers users to explore and compare the performance of various models, enabling them to choose the most suitable approach for their specific needs. The GUI's interactive nature enhances the usability of the project and promotes effective decision-making based on the analysis results. In conclusion, this project combines data science methodologies, including dataset exploration, visualization, RFM analysis, K-means clustering, predictive modeling, and GUI implementation, to provide insights into customer behavior and enable accurate cluster prediction in the groceries market. By leveraging these techniques, businesses can enhance their marketing strategies, improve customer targeting and retention, and ultimately drive growth and profitability in a competitive market landscape. The project's emphasis on user interaction and visualization through the GUI ensures that businesses can easily access and interpret the analysis results, making informed decisions based on data-driven insights.

RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI

RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI PDF

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-07-07

Total Pages: 390

ISBN-13:

DOWNLOAD EBOOK →

In this case study, we will explore RFM (Recency, Frequency, Monetary) analysis and K-means clustering techniques for retail store transaction data. RFM analysis is a powerful method for understanding customer behavior by segmenting them based on their transaction history. K-means clustering is a popular unsupervised machine learning algorithm used for grouping similar data points. We will leverage these techniques to gain insights, perform customer segmentation, and make predictions on retail store transactions. The case study involves a retail store dataset that contains transaction records, including customer IDs, transaction dates, purchase amounts, and other relevant information. This dataset serves as the foundation for our RFM analysis and clustering. RFM analysis involves evaluating three key aspects of customer behavior: recency, frequency, and monetary value. Recency refers to the time since a customer's last transaction, frequency measures the number of transactions made by a customer, and monetary value represents the total amount spent by a customer. By analyzing these dimensions, we can segment customers into different groups based on their purchasing patterns. Before conducting RFM analysis, we need to preprocess and transform the raw transaction data. This includes cleaning the data, aggregating it at the customer level, and calculating the recency, frequency, and monetary metrics for each customer. These transformed RFM metrics will be used for segmentation and clustering. Using the RFM metrics, we can apply clustering algorithms such as K-means to group customers with similar behaviors together. K-means clustering aims to partition the data into a predefined number of clusters based on their feature similarities. By clustering customers, we can identify distinct groups with different purchasing behaviors and tailor marketing strategies accordingly. K-means is an iterative algorithm that assigns data points to clusters in a way that minimizes the within-cluster sum of squares. It starts by randomly initializing cluster centers and then iteratively updates them until convergence. The resulting clusters represent distinct customer segments based on their RFM metrics. To determine the optimal number of clusters for our K-means analysis, we can employ elbow method. This method help us identify the number of clusters that provide the best balance between intra-cluster similarity and inter-cluster dissimilarity. Once the K-means algorithm has assigned customers to clusters, we can analyze the characteristics of each cluster. This involves examining the RFM metrics and other relevant customer attributes within each cluster. By understanding the distinct behavior patterns of each cluster, we can tailor marketing strategies and make targeted business decisions. Visualizations play a crucial role in presenting the results of RFM analysis and K-means clustering. We can create various visual representations, such as scatter plots, bar charts, and heatmaps, to showcase the distribution of customers across clusters and the differences in RFM metrics between clusters. These visualizations provide intuitive insights into customer segmentation. The objective of this data science project is to analyze and predict customer behavior in the groceries market using Python and create a graphical user interface (GUI) using PyQt. The project encompasses various stages, starting from exploring the dataset and visualizing the distribution of features to RFM analysis, K-means clustering, predicting clusters with machine learning algorithms, and implementing a GUI for user interaction. Once we have the clusters, we can utilize machine learning algorithms to predict the cluster for new or unseen customers. We train various models, including logistic regression, support vector machines, decision trees, k-nearest neighbors, random forests, gradient boosting, naive Bayes, adaboost, XGBoost, and LightGBM, on the clustered data. These models learn the patterns and relationships between customer features and their assigned clusters, enabling us to predict the cluster for new customers accurately. To evaluate the performance of our models, we utilize metrics such as accuracy, precision, recall, and F1-score. These metrics allow us to measure the models' predictive capabilities and compare their performance across different algorithms and preprocessing techniques. By assessing the models' performance, we can select the most suitable model for cluster prediction in the groceries market analysis. In addition to the analysis and prediction components, this project aims to provide a user-friendly interface for interaction and visualization. To achieve this, we implement a GUI using PyQt, a Python library for creating desktop applications. The GUI allows users to input new customer data and predict the corresponding cluster based on the trained models. It provides visualizations of the analysis results, including cluster distributions, confusion matrices, and decision boundaries. The GUI allows users to select different machine learning models and preprocessing techniques through radio buttons or dropdown menus. This flexibility empowers users to explore and compare the performance of various models, enabling them to choose the most suitable approach for their specific needs. The GUI's interactive nature enhances the usability of the project and promotes effective decision-making based on the analysis results.

Advances in K-means Clustering

Advances in K-means Clustering PDF

Author: Junjie Wu

Publisher: Springer Science & Business Media

Published: 2012-07-09

Total Pages: 187

ISBN-13: 3642298079

DOWNLOAD EBOOK →

Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.

Data Clustering

Data Clustering PDF

Author:

Publisher: BoD – Books on Demand

Published: 2022-08-17

Total Pages: 128

ISBN-13: 183969887X

DOWNLOAD EBOOK →

In view of the considerable applications of data clustering techniques in various fields, such as engineering, artificial intelligence, machine learning, clinical medicine, biology, ecology, disease diagnosis, and business marketing, many data clustering algorithms and methods have been developed to deal with complicated data. These techniques include supervised learning methods and unsupervised learning methods such as density-based clustering, K-means clustering, and K-nearest neighbor clustering. This book reviews recently developed data clustering techniques and algorithms and discusses the development of data clustering, including measures of similarity or dissimilarity for data clustering, data clustering algorithms, assessment of clustering algorithms, and data clustering methods recently developed for insurance, psychology, pattern recognition, and survey data.

Data Clustering

Data Clustering PDF

Author: Charu C. Aggarwal

Publisher: CRC Press

Published: 2013-08-21

Total Pages: 654

ISBN-13: 1466558210

DOWNLOAD EBOOK →

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Applied Unsupervised Learning with R

Applied Unsupervised Learning with R PDF

Author: Alok Malik

Publisher: Packt Publishing Ltd

Published: 2019-03-27

Total Pages: 320

ISBN-13: 1789951461

DOWNLOAD EBOOK →

Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key FeaturesBuild state-of-the-art algorithms that can solve your business' problemsLearn how to find hidden patterns in your dataRevise key concepts with hands-on exercises using real-world datasetsBook Description Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions. This book begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this book, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection. What you will learnImplement clustering methods such as k-means, agglomerative, and divisiveWrite code in R to analyze market segmentation and consumer behaviorEstimate distribution and probabilities of different outcomesImplement dimension reduction using principal component analysisApply anomaly detection methods to identify fraudDesign algorithms with R and learn how to edit or improve codeWho this book is for Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning. Although the book is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this book, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.

Recent Applications in Data Clustering

Recent Applications in Data Clustering PDF

Author: Harun Pirim

Publisher: BoD – Books on Demand

Published: 2018-08-01

Total Pages: 250

ISBN-13: 178923526X

DOWNLOAD EBOOK →

Clustering has emerged as one of the more fertile fields within data analytics, widely adopted by companies, research institutions, and educational entities as a tool to describe similar/different groups. The book Recent Applications in Data Clustering aims to provide an outlook of recent contributions to the vast clustering literature that offers useful insights within the context of modern applications for professionals, academics, and students. The book spans the domains of clustering in image analysis, lexical analysis of texts, replacement of missing values in data, temporal clustering in smart cities, comparison of artificial neural network variations, graph theoretical approaches, spectral clustering, multiview clustering, and model-based clustering in an R package. Applications of image, text, face recognition, speech (synthetic and simulated), and smart city datasets are presented.

Data Science

Data Science PDF

Author: Francesco Palumbo

Publisher: Springer

Published: 2017-07-04

Total Pages: 342

ISBN-13: 3319557238

DOWNLOAD EBOOK →

This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.

Python Machine Learning

Python Machine Learning PDF

Author: Sebastian Raschka

Publisher: Packt Publishing Ltd

Published: 2015-09-23

Total Pages: 455

ISBN-13: 1783555149

DOWNLOAD EBOOK →

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.