Thin Impedance Vibrators

Thin Impedance Vibrators PDF

Author: Mikhail V. Nesterenko

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 234

ISBN-13: 144197850X

DOWNLOAD EBOOK →

The book is devoted to exploring the foundations of the theory of thin impedance vibrator antennas. The text provides a continuation of the classic theory of thin perfectly conducting vibrators. Many consider impedance conception one of the most universal models in the theory of wave processes, as it informs such a wide spectrum of uses in solving practical problems of electrodynamics. This topic provides an opportunity to further search analytical solutions, allowing a simplification of the mathematical formulation of the boundary problem. The theory strives to widen the boundaries of the impedance vibrator antennas application in complex modern radio-and-electronic systems and devices. The results of much original research conducted by the authors will be useful for practicing engineers and designers of antenna and waveguide systems. The book is written in an academic style, and can be used to teach students and post graduates about radiotechnical and radiophysical specialities. The conclusion of the book lists many actual applied problems, which can provide inspiration for several potential PhD projects. Topics covered in this book are: •general questions of the theory of impedance vibrators in the spatial-frequency representation •electromagnetic waves radiation by impedance vibrators in free space and material mediums •electromagnetic waves radiation by impedance vibrators in material mediums over the perfectly conducting plane •electromagnetic waves scattering by irregular impedance vibrators in free space •generalized method of induced electromotive forces for investigation of the characteristics of impedance vibrators •radiation of electromagnetic waves by radial impedance vibrators on the perfectly conducting sphere •electromagnetic waves scattering by impedance vibrators in the rectangular waveguide

Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes

Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes PDF

Author: Mikhail V. Nesterenko

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Linear vibrator and slot radiators, id est, radiators of electric and magnetic type, respectively, are widely used as separate receiver and transmitter structures, elements of antenna systems, and antenna-feeder devices, including combined vibrator-slot structures. Widespread occurrence of such radiators is an objective prerequisite for theoretical analysis of their electrodynamic characteristics. During the last decades, researchers have published results which make it possible to create a modern theory of thin vibrator and narrow slot radiators. This theory combines the fundamental asymptotic methods for determining the single radiator characteristics, the hybrid analytic-numerical approaches, and the direct numerical techniques for electrodynamic analysis of such radiators. However, the electrodynamics of single linear electric and magnetic radiators is far from been completed. It may be explained by further development of modern antenna techniques and antenna-feeder devices, which can be characterized by such features as multielement structures, integration, and modification of structural units to minimize their mass and dimensions and to ensure electromagnetic compatibility of radio aids, application of metamaterials, formation of required spatial-energy, and spatial-polarization distributions of electromagnetic fields in various nondissipative and dissipative media. To solve these tasks, electric and magnetic radiators, based on various impedance structures with irregular geometric or electrophysical parameters and on combined vibrator-slot structures, should be created. This chapter presents the methodological basis for application of the generalized method of induced EMMF for the analysis of electrodynamic characteristics of the combined vibrator-slot structures. Characteristic feature of the generalization to a new class of approximating functions consists in using them as a function of the current distributions along the impedance vibrator and slot elements; these distributions are derived as the asymptotic solution of integral equations for the current (key problems) by the method of averaging. It should be noted that for simple structures similar to that considered in the model problem, the proposed approach yields an analytic solution of the electrodynamic problem. For more complex structures, the method may be used to design effective numerical-analytical algorithms for their analyses. The demonstrative simulation (the comparative analysis of all electrodynamic characteristics in the operating frequencies range) has confirmed the validity of the proposed generalized method of induced EMMF for analysis of vibrator-slot systems with rather arbitrary structure (within accepted assumptions). Here, as examples, some fragments of this comparative analysis were presented. This method retains all benefits of analytical methods as compared with direct numerical methods and allows to expand significantly the boundaries of numerical and analytical studies of practically important problems, concerning the application of single impedance vibrator, including irregular vibrator, the systems of such vibrators, and narrow slots.

Combined Vibrator-Slot Structures: Theory and Applications

Combined Vibrator-Slot Structures: Theory and Applications PDF

Author: Mikhail V. Nesterenko

Publisher: Springer Nature

Published: 2020-11-27

Total Pages: 337

ISBN-13: 3030601773

DOWNLOAD EBOOK →

The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: • excitation of electromagnetic waves in volumes with coordinate boundaries;• general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;• solution of current equations for isolated vibrator and slot scatterers;• combined radiating vibrator-slot structures in rectangular waveguide;• T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;• waveguide radiation of the combined vibrator-slot structures;• combined vibrator-slot structures located on a perfectly conducting sphere;• combined vibrator-slot Radiators in antenna arrays;• ultrawideband vibrator-slot structures;

Advanced Electromagnetic Waves

Advanced Electromagnetic Waves PDF

Author: Saad Bashir

Publisher: BoD – Books on Demand

Published: 2015-11-18

Total Pages: 280

ISBN-13: 9535122053

DOWNLOAD EBOOK →

This book endeavors to give the reader a strong base in the advanced theory of electromagnetic waves and its applications, while keeping pace with research in various other disciplines that apply electrostatics/electrodynamics theory. The treatment is highly mathematical, which tends to obscure the principles involved.

Electromagnetic Fields Excited in Volumes with Spherical Boundaries

Electromagnetic Fields Excited in Volumes with Spherical Boundaries PDF

Author: Yuriy M. Penkin

Publisher: Springer

Published: 2018-08-22

Total Pages: 197

ISBN-13: 3319978195

DOWNLOAD EBOOK →

This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.

Antennas

Antennas PDF

Author: Boris Levin

Publisher: CRC Press

Published: 2021-04-02

Total Pages: 314

ISBN-13: 1000219933

DOWNLOAD EBOOK →

The book comprises a new method of solving the integral equation of Leontovich, the most rigorous and most effective equation for the current in thin linear antennas. The book describes the features of the new method in its application in various types of antennas. It considers new ways of analyzing antennas, in particular in the calculation of an antenna gain based on main radiation patterns and the calculation of the directional characteristics of radiators with known distribution of current amplitude. The method of electrostatic analogy proposed by the author, provides the base for comparison of electromagnetic fields of high-frequency currents and electrostatic charges located on linear conductors to improve the directional characteristics of log-periodic and director-type antennas. A new approach to the analysis of the electrical characteristics of a microstrip antenna, which allows expansion of its operation range, is substantiated and developed. New results of antenna synthesis are obtained. The second part of the book is devoted to specific types of antennas (the author had a significant role in their creation). Particular attention is given to ship antennas for different frequency ranges. The book is intended for professionals, working in electrodynamics and those working on development, placement and exploitation of antennas. It will be useful for lecturers (university-level professors), teachers, students of radio engineering and researchers working in various fields of radio electronics and interested in an in-depth study of theoretical problems and designs f antennas. It can also be used for short university courses.

Wide-Range Antennas

Wide-Range Antennas PDF

Author: Boris Levin

Publisher: CRC Press

Published: 2019-02-21

Total Pages: 184

ISBN-13: 1351043226

DOWNLOAD EBOOK →

Expanding the range of antenna frequency is the main objective of this book. Solutions proposed are based on the development of new theoretical methods for analyzing and synthesizing antennas. The book shows that concentrated capacitive loads connected along linear and V-antennas provide a high level of matching with a cable over a wide frequency range and improves directional characteristics of antennas, i.e. increases the communication distance. New theoretical methods are proposed for analysis and synthesis of antennas under consideration: 1) method of calculating directional characteristics of radiators with a given current distribution, and 2) method of electrostatic analogy for calculating mutual and total fields of complex multi-element radiating structures. These methods allow us to obtain optimal directional characteristics for director-type antennas (arrays of Yagi-Uda) and log-periodic antennas with concentrated capacitances and show that use of capacitors makes it possible to extend the frequency range of the director antennas and to decrease dimensions of the log-periodic antennas Multi-element (flat and three-dimensional) self-complementary antennas with different variants of connecting generator poles and cable wires to antenna elements are proposed, which improves the matching with a cable. Characteristics of flat structures are compared with characteristics of volume structures: conical, parabolic, and located on a pyramid edges. The book describes new versions of transparent antennas, antennas for cellular communication, multi-tier and multi-radiator antennas, and much more.

Semiconductor Nanotechnology

Semiconductor Nanotechnology PDF

Author: Stephen M. Goodnick

Publisher: Springer

Published: 2018-07-26

Total Pages: 236

ISBN-13: 3319918966

DOWNLOAD EBOOK →

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.