Thermal Power Plant Simulation and Control

Thermal Power Plant Simulation and Control PDF

Author: Damian Flynn

Publisher: IET

Published: 2003-08-18

Total Pages: 447

ISBN-13: 0852964196

DOWNLOAD EBOOK →

An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.

Thermal Power Plants

Thermal Power Plants PDF

Author: Xingrang Liu

Publisher: CRC Press

Published: 2016-08-19

Total Pages: 322

ISBN-13: 1498708234

DOWNLOAD EBOOK →

Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB®, Simulink®, VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.

Thermal Power Plants

Thermal Power Plants PDF

Author: Xingrang Liu

Publisher: CRC Press

Published: 2016-08-19

Total Pages: 344

ISBN-13: 1315354268

DOWNLOAD EBOOK →

Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB®, Simulink®, VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.

Modeling and Simulation of Thermal Power Plants with ThermoSysPro

Modeling and Simulation of Thermal Power Plants with ThermoSysPro PDF

Author: Baligh El Hefni

Publisher: Springer

Published: 2019-01-24

Total Pages: 494

ISBN-13: 3030051056

DOWNLOAD EBOOK →

This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors’ expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: • component description and parameterization data; • modelling hypotheses and simulation results; • fundamental equations and correlations, with their validity domains; • model validation, and in some cases, experimental validation; and • single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.

Computer Simulation of Thermal Plant Operations

Computer Simulation of Thermal Plant Operations PDF

Author: Peter O'Kelly

Publisher: Springer Science & Business Media

Published: 2012-11-27

Total Pages: 513

ISBN-13: 1461442567

DOWNLOAD EBOOK →

This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment. Reviews of relevant numerical computation methods and fundamental thermodynamics are followed by a detailed examination of the basic conservation equations. The bulk of the book is concerned with development of specific simulation models. Care is taken to trace each model derivation path from the basic underlying physical equations, explaining simplifying and restrictive assumptions as they arise and relating the model coefficients to the physical dimensions and physical properties of the working materials. Numerous photographs of real equipment complement the text and most models are illustrated by numerical examples based on typical real plant operations.

Modelling, Simulation and Control of Thermal Energy Systems

Modelling, Simulation and Control of Thermal Energy Systems PDF

Author: Kwang Y. Lee

Publisher: MDPI

Published: 2020-11-03

Total Pages: 228

ISBN-13: 3039433601

DOWNLOAD EBOOK →

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.

Numerical Simulation for Next Generation Thermal Power Plants

Numerical Simulation for Next Generation Thermal Power Plants PDF

Author: Falah Alobaid

Publisher: Springer

Published: 2018-03-29

Total Pages: 431

ISBN-13: 3319762346

DOWNLOAD EBOOK →

The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.

Power Plant Instrumentation and Control Handbook

Power Plant Instrumentation and Control Handbook PDF

Author: Swapan Basu

Publisher: Academic Press

Published: 2019-06-09

Total Pages: 1152

ISBN-13: 0081028059

DOWNLOAD EBOOK →

Power Plant Instrumentation and Control Handbook, Second Edition, provides a contemporary resource on the practical monitoring of power plant operation, with a focus on efficiency, reliability, accuracy, cost and safety. It includes comprehensive listings of operating values and ranges of parameters for temperature, pressure, flow and levels of both conventional thermal power plant and combined/cogen plants, supercritical plants and once-through boilers. It is updated to include tables, charts and figures from advanced plants in operation or pilot stage. Practicing engineers, freshers, advanced students and researchers will benefit from discussions on advanced instrumentation with specific reference to thermal power generation and operations. New topics in this updated edition include plant safety lifecycles and safety integrity levels, advanced ultra-supercritical plants with advanced firing systems and associated auxiliaries, integrated gasification combined cycle (IGCC) and integrated gasification fuel cells (IGFC), advanced control systems, and safety lifecycle and safety integrated systems. Covers systems in use in a wide range of power plants: conventional thermal power plants, combined/cogen plants, supercritical plants, and once through boilers Presents practical design aspects and current trends in instrumentation Discusses why and how to change control strategies when systems are updated/changed Provides instrumentation selection techniques based on operating parameters. Spec sheets are included for each type of instrument Consistent with current professional practice in North America, Europe, and India All-new coverage of Plant safety lifecycles and Safety Integrity Levels Discusses control and instrumentation systems deployed for the next generation of A-USC and IGCC plants

Thermal Power Plants - Volume I

Thermal Power Plants - Volume I PDF

Author: Robin A. Chaplin

Publisher: EOLSS Publications

Published: 2009-11-30

Total Pages: 380

ISBN-13: 190583926X

DOWNLOAD EBOOK →

This book has been derived from the work of several professors in the nuclear and power industry all of whom have been directly involved with the industry as managers or consultants. The text has been written as educational material and many of the individual chapters have been written as course material for advanced university courses. Also several chapters include material related to plant operation which is prescribed for operator training. Hence it bridges the gap between academic study and practical training. While it is not intended to be comprehensive in all respects it does provide an overview of the topic with sufficient technical depth for a general understanding of power plant technology and a basis for further study in a particular area. When used as a reference in this way each chapter can stand alone and be read independently of the others. Overall it meets the general philosophy of EOLSS in providing a source of knowledge for sustainable development and technological progress for educators and decision makers.

Modeling, Simulation, and Control of a Medium-Scale Power System

Modeling, Simulation, and Control of a Medium-Scale Power System PDF

Author: Tharangika Bambaravanage

Publisher: Springer

Published: 2017-10-17

Total Pages: 175

ISBN-13: 9811049106

DOWNLOAD EBOOK →

This book highlights the most important aspects of mathematical modeling, computer simulation, and control of medium-scale power systems. It discusses a number of practical examples based on Sri Lanka’s power system, one characterized by comparatively high degrees of variability and uncertainty. Recently introduced concepts such as controlled disintegration to maintain grid stability are discussed and studied using simulations of practical scenarios. Power systems are complex, geographically distributed, dynamical systems with numerous interconnections between neighboring systems. Further, they often comprise a generation mix that includes hydro, thermal, combined cycle, and intermittent renewable plants, as well as considerably extended transmission lines. Hence, the detailed analysis of their transient behaviors in the presence of disturbances is both highly theory-intensive and challenging in practice. Effectively regulating and controlling power system behavior to ensure consistent service quality and transient stability requires the use of various schemes and systems. The book’s initial chapters detail the fundamentals of power systems; in turn, system modeling and simulation results using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) software are presented and compared with available real-world data. Lastly, the book uses computer simulation studies under a variety of practical contingency scenarios to compare several under-frequency load-shedding schemes. Given the breadth and depth of its coverage, it offers a truly unique resource on the management of medium-scale power systems.