Theory of Inelastic Scattering and Absorption of X-rays

Theory of Inelastic Scattering and Absorption of X-rays PDF

Author: Michel van Veenendaal

Publisher: Cambridge University Press

Published: 2015-01-26

Total Pages: 247

ISBN-13: 1316239861

DOWNLOAD EBOOK →

This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers PDF

Author: Eberhard J. Jaeschke

Publisher: Springer

Published: 2016-05-27

Total Pages: 0

ISBN-13: 9783319143934

DOWNLOAD EBOOK →

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging PDF

Author: Zhong-lin Wang

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 461

ISBN-13: 1489915796

DOWNLOAD EBOOK →

Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.

Electron Dynamics by Inelastic X-Ray Scattering

Electron Dynamics by Inelastic X-Ray Scattering PDF

Author: Winfried Schülke

Publisher: Oxford University Press

Published: 2007-06-21

Total Pages: 606

ISBN-13: 0198510179

DOWNLOAD EBOOK →

This work offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based on inelastic X-ray scattering spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

Inelastic Scattering of X-Rays with Very High Energy Resolution

Inelastic Scattering of X-Rays with Very High Energy Resolution PDF

Author: Eberhard Burkel

Publisher: Springer

Published: 2006-04-11

Total Pages: 120

ISBN-13: 3540383514

DOWNLOAD EBOOK →

Inelastic scattering of X-rays with very high energy resolution has finally become possible thanks to a new generation of high-intensity X-ray sources. This development marks the end to the traditional belief that low energy excitations like lattice vibrations cannot be resolved directly with X-rays: Inelastic scattering experiments allow to observe directly the small energy shifts of the photons. Studies of lattice vibrations, of excitations in molecular crystals, of collective excitations in liquids and electronic excitations in crystals demonstrating the broad applicability and power of this new technology are discussed in this book. The progress in this field opens up fantastic new research areas not only in physics but also in other disciplines such as materials science,biology and chemistry.

X-Ray Absorption and X-Ray Emission Spectroscopy

X-Ray Absorption and X-Ray Emission Spectroscopy PDF

Author: Jeroen A. van Bokhoven

Publisher: John Wiley & Sons

Published: 2016-03-21

Total Pages: 940

ISBN-13: 1118844238

DOWNLOAD EBOOK →

During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials

Fundamentals of Inelastic Electron Scattering

Fundamentals of Inelastic Electron Scattering PDF

Author: P. Schattschneider

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 3709188660

DOWNLOAD EBOOK →

Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.

Neutron and X-ray Spectroscopy

Neutron and X-ray Spectroscopy PDF

Author: Françoise Hippert

Publisher: Springer Science & Business Media

Published: 2006-07-08

Total Pages: 580

ISBN-13: 1402033370

DOWNLOAD EBOOK →

- Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books

Magnetism and Accelerator-Based Light Sources

Magnetism and Accelerator-Based Light Sources PDF

Author: Hervé Bulou

Publisher: Springer Nature

Published: 2021-02-17

Total Pages: 208

ISBN-13: 3030646238

DOWNLOAD EBOOK →

This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.