Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries

Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries PDF

Author: Gabin Yoon

Publisher: Springer Nature

Published: 2022-07-08

Total Pages: 75

ISBN-13: 9811389144

DOWNLOAD EBOOK →

This thesis describes in-depth theoretical efforts to understand the reaction mechanism of graphite and lithium metal as anodes for next-generation rechargeable batteries. The first part deals with Na intercalation chemistry in graphite, whose understanding is crucial for utilizing graphite as an anode for Na-ion batteries. The author demonstrates that Na ion intercalation in graphite is thermodynamically unstable because of the unfavorable Na-graphene interaction. To address this issue, the inclusion of screening moieties, such as solvents, is suggested and proven to enable reversible Na-solvent cointercalation in graphite. Furthermore, the author provides the correlation between the intercalation behavior and the properties of solvents, suggesting a general strategy to tailor the electrochemical intercalation chemistry. The second part addresses the Li dendrite growth issue, which is preventing practical application of Li metal anodes. A continuum mechanics study considering various experimental conditions reveals the origins of irregular growth of Li metal. The findings provide crucial clues for developing effective counter strategies to control the Li metal growth, which will advance the application of high-energy-density Li metal anodes.

Lithium Metal Anodes and Rechargeable Lithium Metal Batteries

Lithium Metal Anodes and Rechargeable Lithium Metal Batteries PDF

Author: Ji-Guang Zhang

Publisher: Springer

Published: 2016-10-06

Total Pages: 206

ISBN-13: 3319440543

DOWNLOAD EBOOK →

This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.

Electrochemical Energy Storage

Electrochemical Energy Storage PDF

Author: Jean-Marie Tarascon

Publisher: John Wiley & Sons

Published: 2015-02-23

Total Pages: 96

ISBN-13: 1118998146

DOWNLOAD EBOOK →

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Nanomaterials for Lithium-Ion Batteries

Nanomaterials for Lithium-Ion Batteries PDF

Author: Rachid Yazami

Publisher: CRC Press

Published: 2013-10-08

Total Pages: 452

ISBN-13: 9814364231

DOWNLOAD EBOOK →

This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in de

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion PDF

Author: Qiang Zhen

Publisher: Springer Nature

Published: 2019-10-10

Total Pages: 472

ISBN-13: 3662586754

DOWNLOAD EBOOK →

Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.

Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection

Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection PDF

Author: Yu Yan

Publisher: OAE Publishing Inc.

Published: 2023-01-11

Total Pages: 32

ISBN-13:

DOWNLOAD EBOOK →

Lithium (Li) metal-based rechargeable batteries hold significant promise to meet the ever-increasing demands for portable electronic devices, electric vehicles and grid-scale energy storage, making them the optimal alternatives for next-generation secondary batteries. Nevertheless, Li metal anodes currently suffer from major drawbacks, including safety concerns, capacity decay and lifespan degradation, which arise from uncontrollable dendrite growth, notorious side reactions and infinite volume variation, thereby limiting their current practical application. Numerous critical endeavors from different perspectives have been dedicated to developing highly stable Li metal anodes. Herein, a comprehensive overview of Li metal anodes regarding fundamental mechanisms, scientific challenges, characterization techniques, theoretical investigations and advanced strategies is systematically presented. First, the basic working principles of Li metal-based batteries are introduced. Specific attention is then paid to the fundamental understanding of and challenges facing Li metal anodes. Accordingly, advanced characterization approaches and theoretical computations are introduced to understand the fundamental mechanisms of dendrite growth and parasitic reactions. Recent key progress in Li anode protection is then comprehensively summarized and categorized to generate an overview of the respective superiorities and limitations of the various strategies. Furthermore, this review concludes the remaining obstacles and potential research directions for inspiring the innovation of Li metal anodes and endeavors to accomplish the practical application of next-generation Li-based batteries.

Lithium-Ion Batteries

Lithium-Ion Batteries PDF

Author: Xianxia Yuan

Publisher: CRC Press

Published: 2011-12-14

Total Pages: 431

ISBN-13: 1439841284

DOWNLOAD EBOOK →

Written by a group of top scientists and engineers in academic and industrial R&D, Lithium-Ion Batteries: Advanced Materials and Technologies gives a clear picture of the current status of these highly efficient batteries. Leading international specialists from universities, government laboratories, and the lithium-ion battery industry share their knowledge and insights on recent advances in the fundamental theories, experimental methods, and research achievements of lithium-ion battery technology. Along with coverage of state-of-the-art manufacturing processes, the book focuses on the technical progress and challenges of cathode materials, anode materials, electrolytes, and separators. It also presents numerical modeling and theoretical calculations, discusses the design of safe and powerful lithium-ion batteries, and describes approaches for enhancing the performance of next-generation lithium-ion battery technology. Due to their high energy density, high efficiency, superior rate capability, and long cycling life, lithium-ion batteries provide a solution to the increasing demands for both stationary and mobile power. With comprehensive and up-to-date information on lithium-ion battery principles, experimental research, numerical modeling, industrial manufacturing, and future prospects, this volume will help you not only select existing materials and technologies but also develop new ones to improve battery performance.

Materials Design and Fundamental Understanding of Lithium Metal Anode for Next-generation Batteries

Materials Design and Fundamental Understanding of Lithium Metal Anode for Next-generation Batteries PDF

Author: Yayuan Liu

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Lithium batteries profoundly impact our society, from portable electronics to the electrification of transportation and even to grid−scale energy storage for intermittent renewable energies. In order to achieve much higher energy density than the state−of−the−art, new battery chemistries are currently being actively investigated. Among all the possible material choices, metallic lithium is the ultimate candidate for battery anode, thanks to its highest theoretical capacity. Therefore, after falling into oblivion for several decades due to safety concerns, metallic Li is now ready for a revival. In the first chapter, I introduce the working mechanisms and limitations of the state−of−the−art battery chemistries and provide an overview of promising new battery chemistries based on metallic lithium anode. The current status of lithium metal anode research is also comprehensively summarized. In the second chapter, I discuss one particular failure mode of metallic lithium anode that has long been overlooked by the battery community, which is the infinite relative volume change of the electrode during cycling. To tackle this problem, novel three−dimensional lithium metal−host material composite designs will be demonstrated. Chapter three focuses on further improving the electrochemical performance of three−dimensional lithium metal anodes with surface coatings. Two examples of lithium metal coatings are given, which have been demonstrated effective for protecting reactive lithium from parasitic reactions with liquid electrolytes and mechanically suppressing nonuniform lithium deposition morphology. Chapter four discusses how the physiochemical properties of the solid−electrolyte interphase, dictated by electrolyte composition, affect the electrochemical behavior of metallic lithium. A special electrolyte additive has been discovered to enable high efficiency lithium cycling in carbonate−based electrolytes used exclusively in almost all commercial lithium-ion batteries. Moreover, the mechanisms behind the improved performance have been studied based on the structure, ion−transport properties, and charge−transfer kinetics of the modified interfacial environment using advanced characterization techniques. In Chapter five, I explore a paradigm shift in designing solid−state lithium metal batteries based on three−dimensional lithium architecture and a flowable interfacial layer. The new design concept can be generally applied to various solid electrolyte systems and the resulting solid-state batteries are capable of high−capacity, high−power operations. In the final part of the dissertation, I present my perspectives and outlooks for the future research in this field. The commercialization of high−energy and safe batteries based on lithium metal chemistry requires continuous efforts in various aspects, including electrode design, electrolyte engineering, development of advanced characterization/diagnosis technologies, full−battery engineering, and possible sensor design for safe battery operation, etc. Ultimately, the combinations of various approaches might be required to make lithium metal anode a viable technology.

Functional Materials For Next-generation Rechargeable Batteries

Functional Materials For Next-generation Rechargeable Batteries PDF

Author: Jiangfeng Ni

Publisher: World Scientific

Published: 2021-02-10

Total Pages: 229

ISBN-13: 9811230684

DOWNLOAD EBOOK →

Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.

Computational and Experimental Investigation Towards a Stable Lithium Metal Anode

Computational and Experimental Investigation Towards a Stable Lithium Metal Anode PDF

Author: He Huang

Publisher:

Published: 2016

Total Pages: 75

ISBN-13:

DOWNLOAD EBOOK →

Lithium metal is the 'Holy Grail' negative electrode of rechargeable batteries as it has the highest theoretical specific capacity and lowest electrochemical potential among all candidates. Next generation high capacity, high energy density battery systems, like lithium sulfur batteries, lithium air batteries, can never reach the level of commercialization without a safe and reliable lithium metal anode. Unfortunately, lithium metal cannot yet be safely implemented in commercial battery packs because of dendrite growth. Dendrite growth of these anode materials can cause short circuit within the battery, leading to dangerous fire and explosion in practical battery working conditions. In this work, through a combination of first principle computational calculations and experimental work, surface alloying lithium metal was found to be a promising approach to enable lithium metal to be directly employed as anode in future lithium metal batteries. The alloy-film protected lithium is effectively stabilized to electrodeposition over 700 cycles (1400 hours) of repeated plating/stripping at a practical current density of 2 mA cm-2. Ultra-long cycling life was realized for a Li4Ti5O12 electrode paired with such alloy-protected lithium metal negative electrodes. This work sheds light on a new and promising research field where the lithium metal can be stabilized by a surface layer/SEI with a low Li diffusion energy barrier.