The Quantum Mechanical Three-Body Problem

The Quantum Mechanical Three-Body Problem PDF

Author: Erich W. Schmid

Publisher: Elsevier

Published: 2017-01-31

Total Pages: 226

ISBN-13: 1483160785

DOWNLOAD EBOOK →

The Quantum Mechanical Three-Body Problem deals with the three-body problem in quantum mechanics. Topics include the two- and three-particle problem, the Faddeev equations and their solution, separable potentials, and variational methods. This book has eight chapters; the first of which introduces the reader to the quantum mechanical three-body problem, its difficulties, and its importance in nuclear physics. Scattering experiments with three-particle breakup are presented. Attention then turns to some concepts of quantum mechanics, with emphasis on two-particle scattering and the Hamiltonian for three particles. The chapters that follow are devoted to the Faddeev equations, including those for scattering states and transition operators, and how such equations can be solved in practice. The solution of the Faddeev equations for separable potentials and local potentials is presented, along with the use of Padé approximation to solve the Faddeev equations. This book concludes with an appraisal of variational methods for bound states, elastic and rearrangement scattering, and the breakup reaction. A promising variational method for solving the Faddeev equations is described. This book will be of value to students interested in three-particle physics and to experimentalists who want to understand better how the theoretical data are derived.

The Quantum Mechanical Few-Body Problem

The Quantum Mechanical Few-Body Problem PDF

Author: W. Glöckle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 207

ISBN-13: 3642820816

DOWNLOAD EBOOK →

Few-body systems are both technically relatively simple and physically non trivial enough to test theories quantitatively. For instance the He-atom played historically an important role in verifying predictions of QED. A similar role is contributed nowadays to the three-nucleon system as a testing ground far nuclear dynamics and maybe in the near future to few-quark systems. They are also often the basic building blocks for many-body systems like to some extent nuclei, where the real many-body aspect is not the dominant feature. The presentation of the subject given here is based on lectures held at var ious places in the last ten years. The selection of the topics is certainly subjec tive and influenced by my own research interests. The content of the book is simply organized according to the increasing nu mb er of particles treated. Be cause of its conceptual simplicity single particle motion is very suitable for in troducing the basic elements of scattering theory. Using these elements the two-body system is treated for the specific case of two nucleons, which is of great importance in the study of the nuclear interaction. Great space is devoted to the less trivial few-body system consisting of three particles. Again physical examples are taken solely from nuclear physics. Finally the four particle system is discussed so as to familiarize the reader with the techniques required for the formulations of n-bodies in general.

Improved Method for Quantum-mechanical Three-body Problems

Improved Method for Quantum-mechanical Three-body Problems PDF

Author: Leonard Eyges

Publisher:

Published: 1965

Total Pages: 18

ISBN-13:

DOWNLOAD EBOOK →

The quantum-mechanical ground-state problem for three identical particles bound by attractive inter-particle potentials is discussed. For this problem it has previously been shown that it is advantageous to write the wave function in a special functional form, form which an integral equation which is equivalent to the Schrodinger equation was derived. In this paper a new method for solving this equation is presented. The method involves an expansion of a two-body problem with a potential of the same shape as the inter-particle potential in the three-body problem, but of enhanced strength.

The Three-Body Problem

The Three-Body Problem PDF

Author: Cixin Liu

Publisher: Tor Books

Published: 2014-11-11

Total Pages: 400

ISBN-13: 1466853441

DOWNLOAD EBOOK →

The inspiration for the Netflix series 3 Body Problem! WINNER OF THE HUGO AWARD FOR BEST NOVEL Over 1 million copies sold in North America “A mind-bending epic.”—The New York Times • “War of the Worlds for the 21st century.”—The Wall Street Journal • “Fascinating.”—TIME • “Extraordinary.”—The New Yorker • “Wildly imaginative.”—Barack Obama • “Provocative.”—Slate • “A breakthrough book.”—George R. R. Martin • “Impossible to put down.”—GQ • “Absolutely mind-unfolding.”—NPR • “You should be reading Liu Cixin.”—The Washington Post The Three-Body Problem is the first novel in the groundbreaking, Hugo Award-winning series from China's most beloved science fiction author, Cixin Liu. Set against the backdrop of China's Cultural Revolution, a secret military project sends signals into space to establish contact with aliens. An alien civilization on the brink of destruction captures the signal and plans to invade Earth. Meanwhile, on Earth, different camps start forming, planning to either welcome the superior beings and help them take over a world seen as corrupt, or to fight against the invasion. The result is a science fiction masterpiece of enormous scope and vision. The Three-Body Problem Series The Three-Body Problem The Dark Forest Death's End Other Books by Cixin Liu Ball Lightning Supernova Era To Hold Up the Sky The Wandering Earth A View from the Stars At the Publisher's request, this title is being sold without Digital Rights Management Software (DRM) applied.

Galileo Unbound

Galileo Unbound PDF

Author: David D. Nolte

Publisher: Oxford University Press

Published: 2018-07-12

Total Pages: 384

ISBN-13: 0192528505

DOWNLOAD EBOOK →

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

The Quantum Mechanics Solver

The Quantum Mechanics Solver PDF

Author: Jean-Louis Basdevant

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 239

ISBN-13: 3662042770

DOWNLOAD EBOOK →

The Quantum Mechanics Solver is unique as it illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration.

Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics PDF

Author: Martin C. Gutzwiller

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 445

ISBN-13: 1461209838

DOWNLOAD EBOOK →

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.