Harmonic Oscillator

Harmonic Oscillator PDF

Author: Moshinsky

Publisher: CRC Press

Published: 1996-05-01

Total Pages: 448

ISBN-13: 9783718606207

DOWNLOAD EBOOK →

A detailed introduction to the principles of particle detectors used in physics, biology, and medicine. Introductory chapters review the interactions of particles and radiation with matter, introduce the principles of detector operation and describe different types of measurement. The main body of the book describes all currently used detectors and counters, including their basic principles, potential uses and limitations. Two chapters are dedicated to electronics (readout methods, monitoring, data acquisition) and data analysis. A final chapter gives examples of detector systems. Concludes with a glossary of terms, tables of units and physical constants, and a reference list. Annotation copyrighted by Book News, Inc., Portland, OR

Physics of the Lorentz Group

Physics of the Lorentz Group PDF

Author: Sibel Baskal

Publisher: Morgan & Claypool Publishers

Published: 2015-11-01

Total Pages: 125

ISBN-13: 1681740621

DOWNLOAD EBOOK →

This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.

University Physics

University Physics PDF

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK →

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.

Introduction to Modern Physics

Introduction to Modern Physics PDF

Author: John Mcgervey

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 769

ISBN-13: 0323161332

DOWNLOAD EBOOK →

Introduction to Modern Physics, Second Edition is a 16-chapter text that discusses the principles of modern physics. This book deals first with the basic topics of modern science including the atomic nature of matter and electricity; the theory of relativity; the old quantum theory; waves and particles; and the Schrödinger equation. The subsequent chapters cover other general topics of molecular spectra, superconductivity, and the biological effects of radiation, illustrating the fundamental quantum theory of angular momentum and the harmonic oscillator. The remaining chapters explore the properties of nucleus, nuclear transformation, and interactions of particles. This book is an invaluable source for undergraduate quantum mechanics students.

Waves and Oscillations

Waves and Oscillations PDF

Author: Walter Fox Smith

Publisher: Oxford University Press

Published: 2010-05-20

Total Pages: 416

ISBN-13: 019539349X

DOWNLOAD EBOOK →

This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.

Topics in Modern Physics

Topics in Modern Physics PDF

Author: John Dirk Walecka

Publisher: World Scientific Publishing Company

Published: 2013-01-21

Total Pages: 500

ISBN-13: 9814436917

DOWNLOAD EBOOK →

While the two previous books entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations exposed the reader to the foundations and frontiers of today's physics, the goal of this third volume is to cover in some detail several topics omitted in the essentially linear progression of the first two. This book is divided into three parts. Part 1 is on quantum mechanics. Analytic solutions to the Schrödinger equation are developed for some basic systems. The analysis is then formalized, concluding with a set of postulates for the theory. Part 2 is on applications of quantum mechanics: approximation methods for bound states, scattering theory, time-dependent perturbation theory, and electromagnetic radiation and quantum electrodynamics. Part 3 covers some selected topics in relativistic quantum field theory: discrete symmetries, the Heisenberg picture, and the Feynman rules for quantum chromodynamics. The three volumes in this series taken together provide a clear, logical, self-contained, and comprehensive base from which the very best students can learn modern physics. When finished, readers should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.

Understanding Acoustics

Understanding Acoustics PDF

Author: Steven L. Garrett

Publisher: Springer

Published: 2017-02-24

Total Pages: 896

ISBN-13: 3319499785

DOWNLOAD EBOOK →

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.

The Quantum Mechanics Solver

The Quantum Mechanics Solver PDF

Author: Jean-Louis Basdevant

Publisher: Springer

Published: 2019-05-22

Total Pages: 343

ISBN-13: 3030137244

DOWNLOAD EBOOK →

Motivates students by challenging them with real-life applications of the somtimes esoteric aspects of quantum mechanics that they are learning. Offers completely original excerices developed at teh Ecole Polytechnique in France, which is know for its innovative and original teaching methods. Problems from modern physics to help the student apply just-learnt theory to fields such as molecular physics, condensed matter physics or laser physics.