Electronic and Optical Properties of Conjugated Polymers

Electronic and Optical Properties of Conjugated Polymers PDF

Author: William Barford

Publisher: OUP Oxford

Published: 2013-04-04

Total Pages: 320

ISBN-13: 0191501700

DOWNLOAD EBOOK →

Conjugated polymers have important technological applications, including solar cells and light emitting devices. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the three key roles of electron-electron interactions, electron-nuclear coupling, and disorder in determining the character of the electronic states, and it relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. The second edition has a more extended discussion of excitons in conjugated polymers. There is also a new chapter on the static and dynamical localization of excitons.

Electronic Properties of Conjugated Polymers

Electronic Properties of Conjugated Polymers PDF

Author: Hans Kuzmany

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 450

ISBN-13: 3642832849

DOWNLOAD EBOOK →

This book deals with electrical, electrochemical, structural, magnetic, optical and lattice dynamical properties of conjugated polymers such as polyaniline, polyacetylene, polydiacetylene, polypyrrole, polyparaphenylene and polythiophene. Several new conjugated systems and model polyenes are also considered. Since the previous winter school on this topic held in 1985, the focus of interest in the field has broadened and now covers not only conductivity and relaxation phenomena of polyacetylene but also nonlinear optical properties, highly oriented and single crystal polymers, and electrochemical and opto-electrochemical properties of special materials. Particular attention is paid in this volume to the possible applications of these systems, for example, in electrochemical cells as electrode materials and in nonlinear optics devices, which now appear to be much more realistic than previously. The detailed contributions are complemented by short reviews of thin film polymers (Langmuir-Blodgett layers), filled polymers, ferromagnetic polymers, superconducting low-dimensional systems (including organic superconductors and high-temperature superconductors) and the application of fractal models to polymers.

Organic Electronic Materials

Organic Electronic Materials PDF

Author: R. Farchioni

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 457

ISBN-13: 3642564259

DOWNLOAD EBOOK →

This book brings together selected contributions both on the fundamental information on the physics and chemistry of these materials, new physical ideas and decisive experiments. It constitutes both an insightful treatise and a handy reference for specialists and graduate students working in solid state physics and chemistry, material science and related fields.

Conjugated Conducting Polymers

Conjugated Conducting Polymers PDF

Author: Helmut Kiess

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 320

ISBN-13: 3642467296

DOWNLOAD EBOOK →

This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.