Quantum-Classical Correspondence

Quantum-Classical Correspondence PDF

Author: A. O. Bolivar

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 196

ISBN-13: 3662096498

DOWNLOAD EBOOK →

At what level of physical existence does "quantum behavior" begin? How does it develop from classical mechanics? This book addresses these questions and thereby sheds light on fundamental conceptual problems of quantum mechanics. It elucidates the problem of quantum-classical correspondence by developing a procedure for quantizing stochastic systems (e.g. Brownian systems) described by Fokker-Planck equations. The logical consistency of the scheme is then verified by taking the classical limit of the equations of motion and corresponding physical quantities. Perhaps equally important, conceptual problems concerning the relationship between classical and quantum physics are identified and discussed. Graduate students and physical scientists will find this an accessible entrée to an intriguing and thorny issue at the core of modern physics.

The Classical–Quantum Correspondence

The Classical–Quantum Correspondence PDF

Author: Benjamin H. Feintzeig

Publisher: Cambridge University Press

Published: 2023-01-31

Total Pages: 141

ISBN-13: 1009049941

DOWNLOAD EBOOK →

This Element provides an entry point for philosophical engagement with quantization and the classical limit. It introduces the mathematical tools of C*-algebras as they are used to compare classical and quantum physics. It then employs those tools to investigate philosophical issues surrounding theory change in physics. It discusses examples in which quantization bears on the topics of reduction, structural continuity, analogical reasoning, and theory construction. In doing so, it demonstrates that the precise mathematical tools of algebraic quantum theory can aid philosophers of science and philosophers of physics.

On the Quantum Theory of Line-spectra

On the Quantum Theory of Line-spectra PDF

Author: Niels Bohr

Publisher: Courier Corporation

Published: 2005-01-01

Total Pages: 132

ISBN-13: 0486442489

DOWNLOAD EBOOK →

This classic work by the Nobel Laureate elaborates on the correspondence principle, discussing the theory's applications from a uniform point of view and considering the underlying assumptions in their relations to ordinary mechanics and electrodynamics. Bohr closely traces the analogy between quantum theory and ordinary theory of radiation. 1918-1922 editions.

Classical and Quantum Computation

Classical and Quantum Computation PDF

Author: Alexei Yu. Kitaev

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 274

ISBN-13: 0821832298

DOWNLOAD EBOOK →

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

The Foundations of Quantum Theory

The Foundations of Quantum Theory PDF

Author: Sol Wieder

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 416

ISBN-13: 0323141714

DOWNLOAD EBOOK →

The Foundations of Quantum Theory discusses the correspondence between the classical and quantum theories through the Poisson bracket-commutator analogy. The book is organized into three parts encompassing 12 chapters that cover topics on one-and many-particle systems and relativistic quantum mechanics and field theory. The first part of the book discusses the developments that formed the basis for the old quantum theory and the use of classical mechanics to develop the theory of quantum mechanics. This part includes considerable chapters on the formal theory of quantum mechanics and the wave mechanics in one- and three-dimension, with an emphasis on Coulomb problem or the hydrogen atom. The second part deals with the interacting particles and noninteracting indistinguishable particles and the material covered is fundamental to almost all branches of physics. The third part presents the pertinent equations used to illustrate the relativistic quantum mechanics and quantum field theory. This book is of value to undergraduate physics students and to students who have background in mechanics, electricity and magnetism, and modern physics.

From c-Numbers to q-Numbers

From c-Numbers to q-Numbers PDF

Author: Olivier Darrigol

Publisher: University of California Press

Published: 2021-01-08

Total Pages: 412

ISBN-13: 0520328272

DOWNLOAD EBOOK →

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1992.

Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics PDF

Author: Martin C. Gutzwiller

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 445

ISBN-13: 1461209838

DOWNLOAD EBOOK →

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.

From Data to Quanta

From Data to Quanta PDF

Author: Slobodan Perovic

Publisher: University of Chicago Press

Published: 2021-10

Total Pages: 251

ISBN-13: 022679833X

DOWNLOAD EBOOK →

"Niels Bohr was a central figure in quantum physics, well-known for his work on atomic structure and his contributions to the Copenhagen interpretation of quantum mechanics. In this book, philosopher Slobodan Perović explores the way Bohr practiced and understood physics, and the implications of this for our understanding of modern science, especially contemporary quantum experimental physics. Perović's method of studying Bohr is philosophical-historical, and his aim is to make sense of both Bohr's understanding of physics and his method of inquiry. He argues that in several important respects, Bohr's vision of physics was driven by his desire to develop a comprehensive perspective on key features of experimental observation as well as emerging experimental work. Perović uncovers how Bohr's distinctive breakthrough contributions are characterized by a multi-layered, phased approach of building on basic experimental insights inductively to develop intermediary and overarching hypotheses. The strengths and limitations of this approach, in contrast to the mathematically or metaphysically driven approaches of other physicists at the time, made him a thoroughly distinctive kind of theorist and scientific leader. Once we see that Bohr played the typical role of a laboratory mediator, and excelled in the inductive process this required, we can fully understand the way his work was generated, the role it played in developing novel quantum concepts, and its true limitations, as well as current adherence to and use of Bohr's complementarity approach among contemporary experimentalists"--

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems PDF

Author: Heinz J. Rothe

Publisher: World Scientific

Published: 2010

Total Pages: 317

ISBN-13: 9814299642

DOWNLOAD EBOOK →

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.