The Analysis of Regulatory DNA: Current Developments, Knowledge and Applications Uncovering Gene Regulation

The Analysis of Regulatory DNA: Current Developments, Knowledge and Applications Uncovering Gene Regulation PDF

Author: Kenneth Berendzen

Publisher: Bentham Science Publishers

Published: 2013-10-29

Total Pages: 225

ISBN-13: 1608054926

DOWNLOAD EBOOK →

A major goal of integrative research is understanding regulatory networks to such an extent as to allow researchers to model developmental and stress responses. Regulatory networks of living systems include complex and vast interactions between proteins, metabolites, RNA, various signaling molecules and DNA. One aspect of systems biology is understanding the dynamics of protein-DNA interactions affecting gene expression that are caused by transcription factors (TFs) and chromatin remodeling factors. This e-book provides a resource for summarizing current knowledge eukaryotic transcription and explores cis-elements and methods for their analysis, prediction and discovery. The book also presents an overview of exploring gene regulatory networks, chromatin, and miRNAs. Information about state-of-the-art techniques for the determination of TF - cis-element interactions in vivo and in silico give cutting edge insights on how genomic-scale research is being approached. The Analysis of Regulatory DNA provides readers with both the necessary background knowledge and provocative, up-to-date insights aimed at sparking new and vibrant experimental designs for understanding and predicting cis-elements in the eukaryotic genome.

Computational Genomics with R

Computational Genomics with R PDF

Author: Altuna Akalin

Publisher: CRC Press

Published: 2020-12-16

Total Pages: 462

ISBN-13: 1498781861

DOWNLOAD EBOOK →

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Genomic Control Process

Genomic Control Process PDF

Author: Isabelle S. Peter

Publisher: Academic Press

Published: 2015-01-21

Total Pages: 461

ISBN-13: 0124047467

DOWNLOAD EBOOK →

Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type Demonstrates the causal power of system-level understanding of genomic control process Conceptually organizes a constellation of complex and diverse biological phenomena Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome

Computational Modeling of Gene Regulatory Networks

Computational Modeling of Gene Regulatory Networks PDF

Author: Hamid Bolouri

Publisher: Imperial College Press

Published: 2008

Total Pages: 341

ISBN-13: 1848162200

DOWNLOAD EBOOK →

This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology.

Emerging Research in the Analysis and Modeling of Gene Regulatory Networks

Emerging Research in the Analysis and Modeling of Gene Regulatory Networks PDF

Author: Ivanov, Ivan V.

Publisher: IGI Global

Published: 2016-06-06

Total Pages: 418

ISBN-13: 1522503544

DOWNLOAD EBOOK →

While technological advancements have been critical in allowing researchers to obtain more and better quality data about cellular processes and signals, the design and practical application of computational models of genomic regulation continues to be a challenge. Emerging Research in the Analysis and Modeling of Gene Regulatory Networks presents a compilation of recent and emerging research topics addressing the design and use of technology in the study and simulation of genomic regulation. Exploring both theoretical and practical topics, this publication is an essential reference source for students, professionals, and researchers working in the fields of genomics, molecular biology, bioinformatics, and drug development.

Gene Regulatory Sequences and Human Disease

Gene Regulatory Sequences and Human Disease PDF

Author: Nadav Ahituv

Publisher: Springer Science & Business Media

Published: 2012-05-30

Total Pages: 289

ISBN-13: 1461416833

DOWNLOAD EBOOK →

In Gene Regulatory Sequences and Human Disease, the Editor will introduce the different technological advances that led to this breakthrough. In addition, several examples will be provided of nucleotide variants in noncoding sequences that have been shown to be associated with various human diseases.

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria PDF

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 1472

ISBN-13: 1119004896

DOWNLOAD EBOOK →

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.

In the Light of Evolution

In the Light of Evolution PDF

Author: National Academy of Sciences

Publisher: Sackler Colloquium

Published: 2007

Total Pages: 388

ISBN-13:

DOWNLOAD EBOOK →

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.