Systems Biomedicine Approaches in Cancer Research

Systems Biomedicine Approaches in Cancer Research PDF

Author: Shailza Singh

Publisher: Springer Nature

Published: 2022-08-10

Total Pages: 170

ISBN-13: 9811919534

DOWNLOAD EBOOK →

This book presents the applications of systems biology and synthetic biology in cancer medicine. It highlights the use of computational and mathematical models to decipher the complexity of cancer heterogeneity. The book emphasizes the modeling approaches for predicting behavior of cancer cells, tissues in context of drug response, and angiogenesis. It introduces cell-based therapies for the treatment of various cancers and reviews the role of neural networks for drug response prediction. Further, it examines the system biology approaches for the identification of medicinal plants in cancer drug discovery. It explores the opportunities for metabolic engineering in the realm of cancer research towards development of new cancer therapies based on metabolically derived targets. Lastly, it discusses the applications of data mining techniques in cancer research. This book is an excellent guide for oncologists and researchers who are involved in the latest cancer research.

Cancer Systems Biology, Bioinformatics and Medicine

Cancer Systems Biology, Bioinformatics and Medicine PDF

Author: Alfredo Cesario

Publisher: Springer Science & Business Media

Published: 2011-08-21

Total Pages: 496

ISBN-13: 9400715676

DOWNLOAD EBOOK →

This teaching monograph on systems approaches to cancer research and clinical applications provides a unique synthesis, by world-class scientists and doctors, of laboratory, computational, and clinical methods, thereby establishing the foundations for major advances not possible with current methods. Specifically, the book: 1) Sets the stage by describing the basis of systems biology and bioinformatics approaches, and the clinical background of cancer in a systems context; 2) Summarizes the laboratory, clinical, data systems analysis and bioinformatics tools, along with infrastructure and resources required; 3) Demonstrates the application of these tools to cancer research; 4) Extends these tools and methods to clinical diagnosis, drug development and treatment applications; and 5) Finishes by exploring longer term perspectives and providing conclusions. This book reviews the state-of-the-art, and goes beyond into new applications. It is written and highly referenced as a textbook and practical guide aimed at students, academics, doctors, clinicians, industrialists and managers in cancer research and therapeutic applications. Ideally, it will set the stage for integration of available knowledge to optimize communication between basic and clinical researchers involved in the ultimate fight against cancer, whatever the field of specific interest, whatever the area of activity within translational research.

A Practical Guide To Cancer Systems Biology

A Practical Guide To Cancer Systems Biology PDF

Author: Juan Hsueh-fen

Publisher: World Scientific

Published: 2017-11-29

Total Pages: 152

ISBN-13: 9813229160

DOWNLOAD EBOOK →

Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research. Contents: Introduction to Cancer Systems Biology (Hsueh-Fen Juan and Hsuan-Cheng Huang)Transcriptome Analysis: Library Construction (Hsin-Yi Chang and Hsueh-Fen Juan)Quantitative Proteome: The Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) (Yi-Hsuan Wu and Hsueh-Fen Juan)Phosphoproteome: Sample Preparation (Chia-Wei Hu and Hsueh-Fen Juan)Transcriptomic Data Analysis: RNA-Seq Analysis Using Galaxy (Chia-Lang Hsu and Chantal Hoi Yin Cheung)Proteomic Data Analysis: Functional Enrichment (Hsin-Yi Chang and Hsueh-Fen Juan)Phosphorylation Data Analysis (Chia-Lang Hsu and Wei-Hsuan Wang)Pathway and Network Analysis (Chen-Tsung Huang and Hsueh-Fen Juan)Dynamic Modeling (Yu-Chao Wang)Protein Structure Modeling (Chia-Hsien Lee and Hsueh-Fen Juan)Docking Simulation (Chia-Hsien Lee and Hsueh-Fen Juan) Readership: Graduate students and researchers entering the cancer systems biology field. Keywords: Systems Biology;Transcriptomics;Proteomics;Network Biology;Dynamic Modeling;Protein Structure Modeling;Docking Simulation;BioinformaticsReview: Key Features: Written by two active researchers in the fieldCovers both experimental and computational areas in cancer systems biologyStep-by-step instructions help beginners who are interested in creating biological data and analyzing the data by themselvesReaders will gain the skills to generate and analyze omics data and discover potential therapeutic targets and drug candidates

Cancer Systems Biology, Bioinformatics and Medicine

Cancer Systems Biology, Bioinformatics and Medicine PDF

Author: Alfredo Cesario

Publisher: Springer

Published: 2011-08-21

Total Pages: 484

ISBN-13: 9789400715660

DOWNLOAD EBOOK →

This teaching monograph on systems approaches to cancer research and clinical applications provides a unique synthesis, by world-class scientists and doctors, of laboratory, computational, and clinical methods, thereby establishing the foundations for major advances not possible with current methods. Specifically, the book: 1) Sets the stage by describing the basis of systems biology and bioinformatics approaches, and the clinical background of cancer in a systems context; 2) Summarizes the laboratory, clinical, data systems analysis and bioinformatics tools, along with infrastructure and resources required; 3) Demonstrates the application of these tools to cancer research; 4) Extends these tools and methods to clinical diagnosis, drug development and treatment applications; and 5) Finishes by exploring longer term perspectives and providing conclusions. This book reviews the state-of-the-art, and goes beyond into new applications. It is written and highly referenced as a textbook and practical guide aimed at students, academics, doctors, clinicians, industrialists and managers in cancer research and therapeutic applications. Ideally, it will set the stage for integration of available knowledge to optimize communication between basic and clinical researchers involved in the ultimate fight against cancer, whatever the field of specific interest, whatever the area of activity within translational research.

Cancer Systems Biology

Cancer Systems Biology PDF

Author: Louise von Stechow

Publisher: Humana

Published: 2019-06-04

Total Pages: 402

ISBN-13: 9781493985036

DOWNLOAD EBOOK →

This book comprises protocols describing systems biology methodologies and computational tools, offering a variety of ways to analyze different types of high-throughput cancer data. Chapters give an overview over data types available in large-scale data repositories and state-of-the-art methods used in the field of cancer systems biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cancer Systems Biology : Methods and Protocols aims to ensure successful results in the further study of this vital field. The chapters "Identifying Genetic Dependencies in Cancer by Analyzing siRNA Screens in Tumor Cell Line Panels", "Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research" and "Phosphoproteomics-based Profiling of Kinase Activities in Cancer Cells" are available open access under a CC BY 4.0 license via link.springer.com.

Large-Scale Biomedical Science

Large-Scale Biomedical Science PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2003-07-19

Total Pages: 297

ISBN-13: 0309089123

DOWNLOAD EBOOK →

The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.

Comprehensive Systems Biomedicine

Comprehensive Systems Biomedicine PDF

Author: Pietro Lio

Publisher: Frontiers E-books

Published: 2014-12-03

Total Pages: 114

ISBN-13: 2889193748

DOWNLOAD EBOOK →

Systems Biomedicine is a field in perpetual development. By definition a translational discipline, it emphasizes the role of quantitative systems approaches in biomedicine and aims to offer solutions to many emerging problems characterized by levels and types of complexity and uncertainty unmet before. Many factors, including technological and societal ones, need to be considered. In particular, new technologies are providing researchers with the data deluge whose management and exploitation requires a reinvention of cross-disciplinary team efforts. The advent of “omics” and high-content imaging are examples of advances de facto establishing the necessity of systems approaches. Hypothesis-driven models and in silico validation tools in support to all the varieties of experimental applications call for a profound revision. The focus on phases like mining and assimilating the data has substantially increased so to allow for interpretable knowledge to be inferred. Notably, to be able to tackle the newly generated data dimensionality, heterogeneity and complexity, model-free and data-driven intensive applications are increasingly shaping the computational pipelines and architectures that quant specialists set aside of the high-throughput genomics, transcriptomics, proteomics platforms. As for the societal aspects, in many advanced societies health care needs now more than in the past to address the problem of managing ageing populations and their complex morbidity patterns. In parallel, there is a growing research interest on the impact that cross-disciplinary clinical, epidemiological and quantitative modelling studies can have in relation to outcomes potentially affecting the quality of life of many people. Complex systems, including those characterizing biomedicine, are assessed in both their functionality and stability, and also relatively to the capacity of generating information from diversity, variation, and complexity. Due to the combined interactions and effects, such systems embed prediction power available for instance in both target identification or marker discovery, or more generally for conducting inference about patients’ pathological states, i.e. normal versus disease, diagnostic or prognostic analysis, and preventive assessment (e.g., risk evaluation). The ultimate goal, personalized medicine, will be achieved based on the confluence of the system’s predictive power to patient-specific profiling.

Cancer Systems Biology

Cancer Systems Biology PDF

Author: Edwin Wang

Publisher: CRC Press

Published: 2017-06-14

Total Pages: 456

ISBN-13: 9781138113299

DOWNLOAD EBOOK →

The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation methods to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorigenesis, cancer researchers can uncover a series of new discoveries and biological insights. The First Cancer Systems Biology Book Designed for Computational and Experimental Biologists Unusual in its dualistic approach, Cancer Systems Biology discusses the recent progress in the understanding of cancer systems biology at a time when more and more researchers and pharmaceutical companies are looking into a systems biology approach to find drugs that can effectively be used to treat cancer patients. Includes Contributions from more than 30 International Experts Part I introduces basic concepts and theories of systems biology and their applications in cancer research, including case studies of current efforts in cancer systems biology. Part II discusses basic cancer biology and cutting-edge topics of cancer research for computational biologists. In contains an overview of genomics, cell signaling, and tumorigenesis, in addition to hot topics like molecular mechanisms of cancer metastasis and the molecular relationships between solid tumors, their microenvironments, and tumor blood vessels. Rounding out the book�s solid coverage, Part III explores a variety of computational tools and public data resources that are useful for studying cancer problems at a systems level. Cancer systems biology is still in its infancy as a field of study, but it is fast becoming indispensable in the battle to defeat cancer and develop successful new treatments. Cancer Systems Biology marks an important step toward reaching that goal.

Systems Biology of Tumor Physiology

Systems Biology of Tumor Physiology PDF

Author: David H. Nguyen

Publisher: Springer

Published: 2015-12-18

Total Pages: 0

ISBN-13: 9783319255996

DOWNLOAD EBOOK →

This exciting SpringerBrief presents evidence for new ideas that will challenge several theories of how cancer biology is understood. Cancer biology has undergone several intellectual revolutions in the past 50 years. A mutation-centric view of cancer has given way to the tumor microenvironment view. Reductionistic studies of one gene at a time have given way to systems biology approaches that analyze the whole genome (omics) at the same time. However, this text combines the complex levels studying cancer at the molecular biology level, endocrinology level, and transcriptomics level. What researchers are now realizing is that there is a need to combine omics with physiology concepts in order to better understand cancer and this book will give insight to the merging of these two fields in order to define how cancer is studied in the future.​

Complex Systems Science in Biomedicine

Complex Systems Science in Biomedicine PDF

Author: Thomas Deisboeck

Publisher: Springer Science & Business Media

Published: 2007-06-13

Total Pages: 857

ISBN-13: 0387335323

DOWNLOAD EBOOK →

Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.