Sustainable Materials for Electrochemcial Capacitors

Sustainable Materials for Electrochemcial Capacitors PDF

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2023-09-20

Total Pages: 468

ISBN-13: 1394166230

DOWNLOAD EBOOK →

Sustainable Materials for Electrochemical Capacitors The book highlights the properties of sustainable materials for the production of commercial electrochemical capacitors. Sustainable Materials for Electrochemical Capacitors details the progress in the usage of ubiquitous environmentally sustainable materials. Due to their cost effectiveness, flexible forms, frequent accessibility, and environmentally friendly nature, electrochemical capacitors with significant surface areas of their carbon components are quite common. Many novel ways for using bio-derived components in highly efficient electrochemical capacitors are being established as a consequence of current research, and this book provides details of all these developments. The book provides: A broad overview of properties explored for the development of electrochemical capacitors; Introduces potential applications of electrochemical capacitors; Highlights sustainable materials exploited for the production of electrochemical capacitors; Presents commercial potential of electrochemical capacitors. Audience This is a useful guide for engineers, materials scientists, physicists, and innovators, who are linked to the development and applications of electrochemical capacitors.

Electrochemical Capacitors

Electrochemical Capacitors PDF

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2018-02-25

Total Pages: 298

ISBN-13: 1945291575

DOWNLOAD EBOOK →

Electrochemical capacitors are most important for the development of future energy storage systems and sustainable power sources. New superior hybrid supercapacitors are based on binary and ternary thin film nanocomposites involving carbon, metal oxides and polymeric materials. The synthesis of materials and fabrication of electrodes for supercapacitor applications is discussed in detail. The book also presents the fundamental theory and a thorough literature review of supercapacitors. Energy Storage, Electrochemical Capacitors, Nanocomposites, Hybrid Supercapacitors, Carbon/Metal Oxide Composites, Metal Oxides/Hydroxides Composites, Polymer Type Capacitors, Nanoscience, Hydrothermal Synthesis, Graphene-based Composites, Ultrasonic Assisted Synthesis

Supercapacitors

Supercapacitors PDF

Author: Francois Beguin

Publisher: John Wiley & Sons

Published: 2013-04-02

Total Pages: 596

ISBN-13: 352764668X

DOWNLOAD EBOOK →

Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.

Nanoscience And Technology: A Collection Of Reviews From Nature Journals

Nanoscience And Technology: A Collection Of Reviews From Nature Journals PDF

Author: Peter Rodgers

Publisher: World Scientific

Published: 2009-08-21

Total Pages: 367

ISBN-13: 9814466867

DOWNLOAD EBOOK →

This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).

Advances in Supercapacitor and Supercapattery

Advances in Supercapacitor and Supercapattery PDF

Author: Mohammad Khalid

Publisher: Elsevier

Published: 2020-12-05

Total Pages: 414

ISBN-13: 0128204036

DOWNLOAD EBOOK →

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices provides a deep insight into energy storage systems and their applications. The first two chapters cover the detailed background, fundamental charge storage mechanism and the various types of supercapacitor. The third chapter give details about the hybrid device (Supercapattery) which comprises of battery and capacitive electrode. The main advantages of Supercapattery over batteries and supercapacitor are discussed in this chapter. The preceding three chapters cover the electrode materials used for supercapattery. The electrolyte is a major part that significantly contributes to the performance of the device. Therefore, different kinds of electrolytes and their suitability are discussed in chapter 6 and 7. The book concludes with a look at the potential applications of supercapattery, challenges and future prospective. This book is beneficial for research scientists, engineers and students who are interested in the latest developments and fundamentals of energy storage mechanism and clarifies the misleading concepts in this field. Presents the three classes of energy storage devices and clarifies the difference between between pseudocapacitor and battery grade material Covers the synthesis strategies to enhance the overall performance of the supercapacitor device (including power density) Explains the energy storage mechanism based on the fundamental concept of physics and electrochemistry

Sustainable Materials for Next Generation Energy Devices

Sustainable Materials for Next Generation Energy Devices PDF

Author: Kuan Yew Cheong

Publisher: Elsevier

Published: 2020-12-01

Total Pages: 402

ISBN-13: 0128209062

DOWNLOAD EBOOK →

Sustainable Materials for Next Generation Energy Devices: Challenges and Opportunities presents the latest state-of-the-art knowledge and innovation related to environmentally-friendly functional materials that can be developed for, and employed in, producing a feasible next generation of energy storage and conversion devices. The book is broken up into three sections, covering Energy Storage, Energy Conversion and Advanced Concepts. It will be an important reference for researchers, engineers and students who want to gain extensive knowledge in green and/or sustainable functional materials and their applications. Provides a concise resource for readers interested in sustainable and green functional materials for energy conversion and storage devices Emphasizes sustainable and green concepts in the design of energy devices based on renewable functional materials Presents a survey of both the challenges and opportunities available for renewable functional materials in the development of energy devices

Materials for Sustainable Energy Applications

Materials for Sustainable Energy Applications PDF

Author: David Munoz-Rojas

Publisher: CRC Press

Published: 2017-03-27

Total Pages: 399

ISBN-13: 131534131X

DOWNLOAD EBOOK →

The impending energy crisis brought on by the running out of finite and non-homogenously distributed fossil fuel reserves and the worldwide increase in energy demand has prompted vast research in the development of sustainable energy technologies in the last few decades. However, the efficiency of most of these new technologies is relatively small and therefore it needs to be increased to eventually replace conventional technologies based on fossil fuels. The required efficiency increase primarily relies on the ability to improve the performance of the functional materials which are at the heart of these technologies. The purpose of this book is to give a unified and comprehensive presentation of the fundamentals and the use and design of novel materials for efficient sustainable energy applications, such as conversion, storage, transmission, and consumption. The book presents general coverage of the use and design of advanced materials for sustainable energy applications. Thus, the book addresses all the relevant aspects, such as materials for energy conversion, storage, transmission, and consumption.

Sustainable Materials and Green Processing for Energy Conversion

Sustainable Materials and Green Processing for Energy Conversion PDF

Author: Kuan Yew Cheong

Publisher: Elsevier

Published: 2021-10-01

Total Pages: 506

ISBN-13: 0128230703

DOWNLOAD EBOOK →

Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices

Supercapacitors

Supercapacitors PDF

Author: Cindy D. Mullan

Publisher: Nova Science Publishers

Published: 2014

Total Pages: 0

ISBN-13: 9781633210196

DOWNLOAD EBOOK →

Electrochemical Capacitors (ECs) are a class of energy storage device that fill the gap between high energy density batteries and high-power-density electrostatic capacitors. ECs show shorter charge/discharge time and higher power density compared to batteries. However, to use ECs as alternatives to batteries, a significant increase in energy density is required. Although critical to the U.S.'s energy future, development of ECs has been hindered by the lack of cost-effective electrode materials that can store more energy. As a cheaper alternative transition metal, manganese (Mn) is abundant and environmentally-friendly. Manganese oxide shows theoretical capacitance of ~800 F g-1, which is comparable to that of RuO2. However, owing to low electronic and ionic conductance, manganese oxide powder exhibits much lower specific capacitances. This book discusses studies of charge-storage mechanism of manganese oxide nanomaterials for ECs. It also discusses sustainable electrode materials made from electrospun alkali lignin-based carbon nanofibres for high performacen supercapacitors; new strategies for the improvement of SC energy density by covalent and non-covalent addition of qunones of carbon surfaces; maganese dioxide based SCs; supercapacitors test methods; and hydrogenated barium titanate films and their potential for integrated SCs.