Surveys in Geometric Analysis and Relativity

Surveys in Geometric Analysis and Relativity PDF

Author: Hubert Lewis Bray

Publisher:

Published: 2011

Total Pages: 0

ISBN-13: 9781571462305

DOWNLOAD EBOOK →

Presents twenty-three selected survey articles on central topics of geometric analysis and general relativity, written by prominent experts in the fields. Topics of geometric analysis include the Yamabe problem, mean curvature flow, minimal surfaces, harmonic maps, collapsing of manifolds, and Kähler-Einstein metrics. General relativity topics include the positive mass theorem, the Penrose inequality, scalar curvature and Einstein's constraint equations, and the positive mass theorem for asymptotically hyperbolic manifolds.

Geometric Relativity

Geometric Relativity PDF

Author: Dan A. Lee

Publisher: American Mathematical Society

Published: 2021-12-20

Total Pages: 377

ISBN-13: 1470466236

DOWNLOAD EBOOK →

Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.

Geometry, Lie Theory and Applications

Geometry, Lie Theory and Applications PDF

Author: Sigbjørn Hervik

Publisher: Springer Nature

Published: 2022-02-07

Total Pages: 337

ISBN-13: 3030812960

DOWNLOAD EBOOK →

This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.

A Mathematical Journey to Relativity

A Mathematical Journey to Relativity PDF

Author: Wladimir-Georges Boskoff

Publisher: Springer Nature

Published: 2020-06-01

Total Pages: 412

ISBN-13: 3030478947

DOWNLOAD EBOOK →

This book opens with an axiomatic description of Euclidean and non-Euclidean geometries. Euclidean geometry is the starting point to understand all other geometries and it is the cornerstone for our basic intuition of vector spaces. The generalization to non-Euclidean geometry is the following step to develop the language of Special and General Relativity. These theories are discussed starting from a full geometric point of view. Differential geometry is presented in the simplest way and it is applied to describe the physical world. The final result of this construction is deriving the Einstein field equations for gravitation and spacetime dynamics. Possible solutions, and their physical implications are also discussed: the Schwarzschild metric, the relativistic trajectory of planets, the deflection of light, the black holes, the cosmological solutions like de Sitter, Friedmann-Lemaître-Robertson-Walker, and Gödel ones. Some current problems like dark energy are also scketched. The book is self-contained and includes details of all proofs. It provides solutions or tips to solve problems and exercises. It is designed for undergraduate students and for all readers who want a first geometric approach to Special and General Relativity.

The Geometry of Special Relativity

The Geometry of Special Relativity PDF

Author: Tevian Dray

Publisher: CRC Press

Published: 2012-07-02

Total Pages: 151

ISBN-13: 1466510471

DOWNLOAD EBOOK →

The Geometry of Special Relativity provides an introduction to special relativity that encourages readers to see beyond the formulas to the deeper geometric structure. The text treats the geometry of hyperbolas as the key to understanding special relativity. This approach replaces the ubiquitous γ symbol of most standard treatments with the appropriate hyperbolic trigonometric functions. In most cases, this not only simplifies the appearance of the formulas, but also emphasizes their geometric content in such a way as to make them almost obvious. Furthermore, many important relations, including the famous relativistic addition formula for velocities, follow directly from the appropriate trigonometric addition formulas. The book first describes the basic physics of special relativity to set the stage for the geometric treatment that follows. It then reviews properties of ordinary two-dimensional Euclidean space, expressed in terms of the usual circular trigonometric functions, before presenting a similar treatment of two-dimensional Minkowski space, expressed in terms of hyperbolic trigonometric functions. After covering special relativity again from the geometric point of view, the text discusses standard paradoxes, applications to relativistic mechanics, the relativistic unification of electricity and magnetism, and further steps leading to Einstein’s general theory of relativity. The book also briefly describes the further steps leading to Einstein’s general theory of relativity and then explores applications of hyperbola geometry to non-Euclidean geometry and calculus, including a geometric construction of the derivatives of trigonometric functions and the exponential function.

Relativity and Geometry

Relativity and Geometry PDF

Author: Roberto Torretti

Publisher: Elsevier

Published: 2014-05-20

Total Pages: 409

ISBN-13: 1483147371

DOWNLOAD EBOOK →

Relativity and Geometry aims to elucidate the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phases of relativity. The book contains seven chapters and a mathematical appendix. The first two chapters review a historical background of relativity. Chapter 3 centers on Einstein's first Relativity paper of 1905. Subsequent chapter presents the Minkowskian formulation of special relativity. Chapters 5 and 6 deal with Einstein's search for general relativity from 1907 to 1915, as well as some aspects and subsequent developments of the theory. The last chapter explores the concept of simultaneity, geometric conventionalism, and a few other questions concerning space time structure, causality, and time.

The Geometry of Special Relativity - a Concise Course

The Geometry of Special Relativity - a Concise Course PDF

Author: Norbert Dragon

Publisher: Springer Science & Business Media

Published: 2012-08-01

Total Pages: 148

ISBN-13: 3642283292

DOWNLOAD EBOOK →

In this concise primer it is shown that, with simple diagrams, the phenomena of time dilatation, length contraction and Lorentz transformations can be deduced from the fact that in a vacuum one cannot distinguish physically straight and uniform motion from rest, and that the speed of light does not depend on the speed of either the source or the observer. The text proceeds to derive the important results of relativistic physics and to resolve its apparent paradoxes. A short introduction into the covariant formulation of electrodynamics is also given. This publication addresses, in particular, students of physics and mathematics in their final undergraduate year.

Spacetime

Spacetime PDF

Author: Marcus Kriele

Publisher: Springer Science & Business Media

Published: 2003-07-01

Total Pages: 444

ISBN-13: 3540483543

DOWNLOAD EBOOK →

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.

The Physical and Mathematical Foundations of the Theory of Relativity

The Physical and Mathematical Foundations of the Theory of Relativity PDF

Author: Antonio Romano

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 496

ISBN-13: 3030272370

DOWNLOAD EBOOK →

This unique textbook offers a mathematically rigorous presentation of the theory of relativity, emphasizing the need for a critical analysis of the foundations of general relativity in order to best study the theory and its implications. The transitions from classical mechanics to special relativity and then to general relativity are explored in detail as well, helping readers to gain a more profound and nuanced understanding of the theory as a whole. After reviewing the fundamentals of differential geometry and classical mechanics, the text introduces special relativity, first using the physical approach proposed by Einstein and then via Minkowski’s mathematical model. The authors then address the relativistic thermodynamics of continua and electromagnetic fields in matter – topics which are normally covered only very briefly in other treatments – in the next two chapters. The text then turns to a discussion of general relativity by means of the authors’ unique critical approach, underlining the difficulty of recognizing the physical meaning of some statements, such as the physical meaning of coordinates and the derivation of physical quantities from those of space-time. Chapters in this section cover the model of space-time proposed by Schwarzschild; black holes; the Friedman equations and the different cosmological models they describe; and the Fermi-Walker derivative. Well-suited for graduate students in physics and mathematics who have a strong foundation in real analysis, classical mechanics, and general physics, this textbook is appropriate for a variety of graduate-level courses that cover topics in relativity. Additionally, it will interest physicists and other researchers who wish to further study the subtleties of these theories and understand the contemporary scholarly discussions surrounding them.

A New Perspective on Relativity

A New Perspective on Relativity PDF

Author: Bernard H. Lavenda

Publisher: World Scientific

Published: 2012

Total Pages: 695

ISBN-13: 9814340480

DOWNLOAD EBOOK →

Starting off from noneuclidean geometries, apart from the method of Einstein's equations, this book derives and describes the phenomena of gravitation and diffraction. A historical account is presented, exposing the missing link in Einstein's construction of the theory of general relativity: the uniformly rotating disc, together with his failure to realize, that the Beltrami metric of hyperbolic geometry with constant curvature describes exactly the uniform acceleration observed. This book also explores these questions: * How does time bend? * Why should gravity propagate at the speed of light? * How does the expansion function of the universe relate to the absolute constant of the noneuclidean geometries? * Why was the Sagnac effect ignored? * Can Maxwell's equations accommodate mass? * Is there an inertia due solely to polarization? * Can objects expand in elliptic geometry like they contract in hyperbolic geometry?