Superstrings, Geometry, Topology, and $C^*$-algebras

Superstrings, Geometry, Topology, and $C^*$-algebras PDF

Author: Robert S. Doran

Publisher: American Mathematical Soc.

Published: 2010-10-13

Total Pages: 265

ISBN-13: 0821848879

DOWNLOAD EBOOK →

This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.

Topology, $C^*$-Algebras, and String Duality

Topology, $C^*$-Algebras, and String Duality PDF

Author: Jonathan R_osenberg

Publisher: American Mathematical Soc.

Published: 2009-10-27

Total Pages: 122

ISBN-13: 0821849220

DOWNLOAD EBOOK →

String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.

Topological Recursion and its Influence in Analysis, Geometry, and Topology

Topological Recursion and its Influence in Analysis, Geometry, and Topology PDF

Author: Chiu-Chu Melissa Liu

Publisher: American Mathematical Soc.

Published: 2018-11-19

Total Pages: 549

ISBN-13: 1470435411

DOWNLOAD EBOOK →

This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry PDF

Author: Sergey Novikov

Publisher: American Mathematical Soc.

Published: 2021-04-12

Total Pages: 480

ISBN-13: 1470455927

DOWNLOAD EBOOK →

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Recent Developments in Lie Algebras, Groups and Representation Theory

Recent Developments in Lie Algebras, Groups and Representation Theory PDF

Author: Kailash C. Misra

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 330

ISBN-13: 0821869175

DOWNLOAD EBOOK →

This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.

Methods of Noncommutative Geometry for Group C*-Algebras

Methods of Noncommutative Geometry for Group C*-Algebras PDF

Author: Do Ngoc Diep

Publisher: CRC Press

Published: 1999-12-06

Total Pages: 366

ISBN-13: 9781584880196

DOWNLOAD EBOOK →

The description of the structure of group C*-algebras is a difficult problem, but relevant to important new developments in mathematics, such as non-commutative geometry and quantum groups. Although a significant number of new methods and results have been obtained, until now they have not been available in book form. This volume provides an introduction to and presents research on the study of group C*-algebras, suitable for all levels of readers - from graduate students to professional researchers. The introduction provides the essential features of the methods used. In Part I, the author offers an elementary overview - using concrete examples-of using K-homology, BFD functors, and KK-functors to describe group C*-algebras. In Part II, he uses advanced ideas and methods from representation theory, differential geometry, and KK-theory, to explain two primary tools used to study group C*-algebras: multidimensional quantization and construction of the index of group C*-algebras through orbit methods. The structure of group C*-algebras is an important issue both from a theoretical viewpoint and in its applications in physics and mathematics. Armed with the background, tools, and research provided in Methods of Noncommutative Geometry for Group C*-Algebras, readers can continue this work and make significant contributions to perfecting the theory and solving this problem.

Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics

Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics PDF

Author: Kailash C. Misra

Publisher: American Mathematical Soc.

Published: 2016-06-28

Total Pages: 370

ISBN-13: 1470418444

DOWNLOAD EBOOK →

This book contains the proceedings of the 2012–2014 Southeastern Lie Theory Workshop Series held at North Carolina State University in April 2012, at College of Charleston in December 2012, at Louisiana State University in May 2013, and at University of Georgia in May 2014. Some of the articles by experts in the field survey recent developments while others include new results in representations of Lie algebras, and quantum groups, vertex (operator) algebras and Lie superalgebras.

Noncommutative Geometry and Optimal Transport

Noncommutative Geometry and Optimal Transport PDF

Author: Pierre Martinetti

Publisher: American Mathematical Soc.

Published: 2016-10-26

Total Pages: 234

ISBN-13: 1470422972

DOWNLOAD EBOOK →

The distance formula in noncommutative geometry was introduced by Connes at the end of the 1980s. It is a generalization of Riemannian geodesic distance that makes sense in a noncommutative setting, and provides an original tool to study the geometry of the space of states on an algebra. It also has an intriguing echo in physics, for it yields a metric interpretation for the Higgs field. In the 1990s, Rieffel noticed that this distance is a noncommutative version of the Wasserstein distance of order 1 in the theory of optimal transport. More exactly, this is a noncommutative generalization of Kantorovich dual formula of the Wasserstein distance. Connes distance thus offers an unexpected connection between an ancient mathematical problem and the most recent discovery in high energy physics. The meaning of this connection is far from clear. Yet, Rieffel's observation suggests that Connes distance may provide an interesting starting point for a theory of optimal transport in noncommutative geometry. This volume contains several review papers that will give the reader an extensive introduction to the metric aspect of noncommutative geometry and its possible interpretation as a Wasserstein distance on a quantum space, as well as several topic papers.

Nine Mathematical Challenges: An Elucidation

Nine Mathematical Challenges: An Elucidation PDF

Author: A. Kechris

Publisher: American Mathematical Soc.

Published: 2021-09-24

Total Pages: 221

ISBN-13: 1470454904

DOWNLOAD EBOOK →

This volume stems from the Linde Hall Inaugural Math Symposium, held from February 22–24, 2019, at California Institute of Technology, Pasadena, California. The content isolates and discusses nine mathematical problems, or sets of problems, in a deep way, but starting from scratch. Included among them are the well-known problems of the classification of finite groups, the Navier-Stokes equations, the Birch and Swinnerton-Dyer conjecture, and the continuum hypothesis. The other five problems, also of substantial importance, concern the Lieb–Thirring inequalities, the equidistribution problems in number theory, surface bundles, ramification in covers and curves, and the gap and type problems in Fourier analysis. The problems are explained succinctly, with a discussion of what is known and an elucidation of the outstanding issues. An attempt is made to appeal to a wide audience, both in terms of the field of expertise and the level of the reader.

Modern Geometry: A Celebration of the Work of Simon Donaldson

Modern Geometry: A Celebration of the Work of Simon Donaldson PDF

Author: Vicente Muñoz

Publisher: American Mathematical Soc.

Published: 2018-09-05

Total Pages: 416

ISBN-13: 1470440946

DOWNLOAD EBOOK →

This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.