Electrochemical Supercapacitors

Electrochemical Supercapacitors PDF

Author: B. E. Conway

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 714

ISBN-13: 1475730586

DOWNLOAD EBOOK →

The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago.

Supercapacitors

Supercapacitors PDF

Author: Francois Beguin

Publisher: John Wiley & Sons

Published: 2013-04-02

Total Pages: 596

ISBN-13: 352764668X

DOWNLOAD EBOOK →

Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.

Materials for Supercapacitor Applications

Materials for Supercapacitor Applications PDF

Author: M. Aulice Scibioh

Publisher: Elsevier

Published: 2020-01-26

Total Pages: 400

ISBN-13: 0128198591

DOWNLOAD EBOOK →

Materials for Supercapacitor Applications provides a snapshot of the present status of this rapidly growing field. It covers motivations, innovations, ongoing breakthroughs in research and development, innovative materials, impacts, and perspectives, as well as the challenges and technical barriers to identifying an ideal material for practical applications. This comprehensive reference by electro-chemists explains concepts in materials selection and their unique applications based on their electro-chemical properties. Chemists, chemical and electrical engineers, material scientists, and research scholars and students interested in energy will benefit from this overview of many important reference points in understanding the materials used in supercapacitors. Provides an overview of the formulation for new materials and how to characterize them for supercapacitor applications Describes all the information on the available materials for supercapacitor applications Outlines potential material characterization methods Discusses perspectives and future directions of the field

Electrochemical Supercapacitors for Energy Storage and Delivery

Electrochemical Supercapacitors for Energy Storage and Delivery PDF

Author: Aiping Yu

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 373

ISBN-13: 1439869901

DOWNLOAD EBOOK →

Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.

Batteries and Supercapacitors Aging

Batteries and Supercapacitors Aging PDF

Author: Pascal Venet

Publisher: MDPI

Published: 2020-04-15

Total Pages: 214

ISBN-13: 3039287141

DOWNLOAD EBOOK →

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.

Electrolytes for Electrochemical Supercapacitors

Electrolytes for Electrochemical Supercapacitors PDF

Author: Cheng Zhong

Publisher: CRC Press

Published: 2016-04-27

Total Pages: 354

ISBN-13: 1498747574

DOWNLOAD EBOOK →

Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research

Nanomaterials in Advanced Batteries and Supercapacitors

Nanomaterials in Advanced Batteries and Supercapacitors PDF

Author: Kenneth I. Ozoemena

Publisher: Springer

Published: 2016-07-18

Total Pages: 567

ISBN-13: 3319260820

DOWNLOAD EBOOK →

This book provides an authoritative source of information on the use of nanomaterials to enhance the performance of existing electrochemical energy storage systems and the manners in which new such systems are being made possible. The book covers the state of the art of the design, preparation, and engineering of nanoscale functional materials as effective catalysts and as electrodes for electrochemical energy storage and mechanistic investigation of electrode reactions. It also provides perspectives and challenges for future research. A related book by the same editors is: Nanomaterials for Fuel Cell Catalysis.

Flexible Supercapacitor Nanoarchitectonics

Flexible Supercapacitor Nanoarchitectonics PDF

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-06-29

Total Pages: 674

ISBN-13: 1119711452

DOWNLOAD EBOOK →

The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.

Supercapacitors

Supercapacitors PDF

Author: Syam G. Krishnan

Publisher: Elsevier

Published: 2024-04-01

Total Pages: 435

ISBN-13: 0443154775

DOWNLOAD EBOOK →

Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, and particularly in terms of novel materials and electrolytes.The book will address the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, various polymer nanocomposites, and polyoxometalates for supercapacitors. This is followed by in-depth coverage of electrolytes, including the evolution of electrolytes from aqueous to water-in-salt electrolytes and their role in improving the energy density of supercapacitors. The final part of the book examines the role of artificial intelligence in the design of supercapacitors, and latest developments in translating novel supercapacitor technologies from laboratory-scale research to a commercialization.This is a valuable resource for advanced students, researchers, and scientists in the fields of energy storage, electrical engineering, materials science, and chemical engineering, as well as engineers and R&D personnel working with supercapacitors or energy storage in an industrial setting. Brings together the latest developments in supercapacitor materials and electrolytes Discusses cutting-edge charge storage concepts and methods for supercapacitors Addresses the role of machine learning and the scale-up from laboratory to commercialization

Supercapacitors

Supercapacitors PDF

Author: Lionginas Liudvinavičius

Publisher: BoD – Books on Demand

Published: 2018-06-27

Total Pages: 168

ISBN-13: 1789233526

DOWNLOAD EBOOK →

This edited volume Supercapacitors: Theoretical and Practical Solutions is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of electronic devices and materials. The book comprises single chapters authored by various researchers and is edited by a group of experts. Each chapter is complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electronic devices and materials and opens new possible research paths for further novel developments.