Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers PDF

Author: Eberhard J. Jaeschke

Publisher: Springer

Published: 2016-05-27

Total Pages: 0

ISBN-13: 9783319143934

DOWNLOAD EBOOK →

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Electron Dynamics by Inelastic X-Ray Scattering

Electron Dynamics by Inelastic X-Ray Scattering PDF

Author: Winfried Schülke

Publisher: Oxford University Press, USA

Published: 2007-06-21

Total Pages: 606

ISBN-13: 0198510179

DOWNLOAD EBOOK →

This work offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based on inelastic X-ray scattering spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

Electron Dynamics by Inelastic X-Ray Scattering

Electron Dynamics by Inelastic X-Ray Scattering PDF

Author: Winfried Schuelke

Publisher: OUP Oxford

Published: 2007-06-21

Total Pages: 608

ISBN-13: 0191523283

DOWNLOAD EBOOK →

Knowledge of the dynamics of many-electron systems is of fundamental importance to all disciplines of condensed matter physics. A very effective access to electron dynamics is offered by inelastic X-ray scattering (IXS) spectroscopy. The double differential scattering cross section for IXS is directly related to the time-dependent two-particle density correlation function, and, for large momentum and energy transfer (Compton limit) to the electron momentum distribution. Moreover, resonant inelastic X-ray scattering (RIXS) enables the study of electron dynamics via electronic excitations in a very selective manner (e.g. selectively spin, crystal momentum, or symmetry), so that other methods are efficaciously complemented. The progress of IXS spectroscopy is intimately related to the growing range of applications of synchrotron radiation. The aim of the book is to provide the growing community of researchers with accounts of experimental methods, instrumentation, and data analysis of IXS, with representative examples of successful applications, and with the theoretical framework for interpretations of the measurements.

Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics PDF

Author:

Publisher: Academic Press

Published: 2015-08-21

Total Pages: 354

ISBN-13: 0128025190

DOWNLOAD EBOOK →

Advances in Imaging & Electron Physics merges two long-running serials—Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates on all the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science. and digital image processing

Comprehensive Biophysics

Comprehensive Biophysics PDF

Author:

Publisher: Academic Press

Published: 2012-04-12

Total Pages: 3533

ISBN-13: 0080957188

DOWNLOAD EBOOK →

Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource

Measuring and Modeling Diffuse Scattering in Protein X-ray Crystallography

Measuring and Modeling Diffuse Scattering in Protein X-ray Crystallography PDF

Author:

Publisher:

Published: 2016

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK →

X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation-libration-screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. Lastly, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.