Structural Dynamics in Earthquake and Blast Resistant Design

Structural Dynamics in Earthquake and Blast Resistant Design PDF

Author: BK Raghu Prasad

Publisher: CRC Press

Published: 2020-08-31

Total Pages: 354

ISBN-13: 1351250507

DOWNLOAD EBOOK →

Focusing on the fundamentals of structural dynamics required for earthquake blast resistant design, Structural Dynamics in Earthquake and Blast Resistant Design initiates a new approach of blending a little theory with a little practical design in order to bridge this unfriendly gap, thus making the book more structural engineer-friendly. This is attempted by introducing the equations of motion followed by free and forced vibrations of SDF and MDF systems, D’Alembert’s principle, Duhammel’s integral, relevant impulse, pulse and sinusoidal inputs, and, most importantly, support motion and triangular pulse input required in earthquake and blast resistant designs, respectively. Responses of multistorey buildings subjected to earthquake ground motion by a well-known mode superposition technique are explained. Examples of real-size structures as they are being designed and constructed using the popular ETABS and STAAD are shown. Problems encountered in such designs while following the relevant codes of practice like IS 1893 2016 due to architectural constraints are highlighted. A very difficult constraint is in avoiding torsional modes in fundamental and first three modes, the inability to get enough mass participation, and several others. In blast resistant design the constraint is to model the blast effects on basement storeys (below ground level). The problem is in obtaining the attenuation due to the soil. Examples of inelastic hysteretic systems where top soft storey plays an important role in expending the input energy, provided it is not below a stiffer storey (as also required by IS 1893 2016), and inelastic torsional response of structures asymmetric in plan are illustrated in great detail. In both cases the concept of ductility is explained in detail. Results of response spectrum analyses of tall buildings asymmetric in plan constructed in Bengaluru using ETABS are mentioned. Application of capacity spectrum is explained and illustrated using ETABS for a tall building. Research output of retrofitting techniques is mentioned. Response spectrum analysis using PYTHON is illustrated with the hope that it could be a less expensive approach as it is an open source code. A new approach of creating a fictitious (imaginary) boundary to obtain blast loads on below-ground structures devised by the author is presented with an example. Aimed at senior undergraduates and graduates in civil engineering, earthquake engineering and structural engineering, this book: Explains in a simple manner the fundamentals of structural dynamics pertaining to earthquake and blast resistant design Illustrates seismic resistant designs such as ductile design philosophy and limit state design with the use of capacity spectrum Discusses frequency domain analysis and Laplace transform approach in detail Explains solutions of building frames using software like ETABS and STAAD Covers numerical simulation using a well-known open source tool PYTHON

Structural Dynamics in Earthquake and Blast Resistant Design

Structural Dynamics in Earthquake and Blast Resistant Design PDF

Author: B. K. Raghu Prasad

Publisher: CRC Press

Published: 2020

Total Pages: 0

ISBN-13: 9781351250528

DOWNLOAD EBOOK →

Focusing on the fundamentals of structural dynamics required for earthquake blast resistant design, Structural Dynamics in Earthquake and Blast Resistant Design initiates a new approach of blending a little theory with a little practical design in order to bridge this unfriendly gap, thus making the book more structural engineer-friendly. This is attempted by introducing the equations of motion followed by free and forced vibrations of SDF and MDF systems, D'Alembert's principle, Duhammel's integral, relevant impulse, pulse and sinusoidal inputs, and, most importantly, support motion and triangular pulse input required in earthquake and blast resistant designs, respectively. Responses of multistorey buildings subjected to earthquake ground motion by a well-known mode superposition technique are explained. Examples of real-size structures as they are being designed and constructed using the popular ETABS and STAAD are shown. Problems encountered in such designs while following the relevant codes of practice like IS 1893 2016 due to architectural constraints are highlighted. A very difficult constraint is in avoiding torsional modes in fundamental and first three modes, the inability to get enough mass participation, and several others. In blast resistant design the constraint is to model the blast effects on basement storeys (below ground level). The problem is in obtaining the attenuation due to the soil. Examples of inelastic hysteretic systems where top soft storey plays an important role in expending the input energy, provided it is not below a stiffer storey (as also required by IS 1893 2016), and inelastic torsional response of structures asymmetric in plan are illustrated in great detail. In both cases the concept of ductility is explained in detail. Results of response spectrum analyses of tall buildings asymmetric in plan constructed in Bengaluru using ETABS are mentioned. Application of capacity spectrum is explained and illustrated using ETABS for a tall building. Research output of retrofitting techniques is mentioned. Response spectrum analysis using PYTHON is illustrated with the hope that it could be a less expensive approach as it is an open source code. A new approach of creating a fictitious (imaginary) boundary to obtain blast loads on below-ground structures devised by the author is presented with an example. Aimed at senior undergraduates and graduates in civil engineering, earthquake engineering and structural engineering, this book: Explains in a simple manner the fundamentals of structural dynamics pertaining to earthquake and blast resistant design Illustrates seismic resistant designs such as ductile design philosophy and limit state design with the use of capacity spectrum Discusses frequency domain analysis and Laplace transform approach in detail Explains solutions of building frames using software like ETABS and STAAD Covers numerical simulation using a well-known open source tool PYTHON

Structural Dynamics and Earthquake Resistant Design

Structural Dynamics and Earthquake Resistant Design PDF

Author: B. K. Raghu Prasad

Publisher: CRC Press

Published: 2020-07-07

Total Pages: 332

ISBN-13: 9780815370185

DOWNLOAD EBOOK →

Focussing on fundamentals of structural dynamics required for earthquake resistant design, the book initiates by mentioning equations of motion followed by free and forced vibrations of SDF and MDF systems. Relevant impulse, pulse and sinusoidal inputs obtained by directly solving the differential equations of motion and Duhammel's integral are illustrated. Responses of a multistory building subjected to earthquake ground motion by direct integration as well as mode superposition are explained including inelastic hysteretic seismic behaviour of tall buildings with ductility of RC structures. Solutions of building frames using software like ETABS and STAAD are explained using Octave/Scilab.

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES PDF

Author: PANKAJ AGRAWAL

Publisher: PHI Learning Pvt. Ltd.

Published: 2006-01-01

Total Pages: 666

ISBN-13: 9788120328921

DOWNLOAD EBOOK →

This comprehensive and well-organized book presents the concepts and principles of earthquake resistant design of structures in an easy-to-read style. The use of these principles helps in the implementation of seismic design practice. The book adopts a step-by-step approach, starting from the fundamentals of structural dynamics to application of seismic codes in analysis and design of structures. The text also focusses on seismic evaluation and retrofitting of reinforced concrete and masonry buildings. The text has been enriched with a large number of diagrams and solved problems to reinforce the understanding of the concepts. Intended mainly as a text for undergraduate and postgraduate students of civil engineering, this text would also be of considerable benefit to practising engineers, architects, field engineers and teachers in the field of earthquake resistant design of structures.

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications PDF

Author: Plevris, Vagelis

Publisher: IGI Global

Published: 2012-05-31

Total Pages: 456

ISBN-13: 1466616415

DOWNLOAD EBOOK →

Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

Structural Dynamics with Applications in Earthquake and Wind Engineering

Structural Dynamics with Applications in Earthquake and Wind Engineering PDF

Author: Konstantin Meskouris

Publisher: Springer

Published: 2019-04-27

Total Pages: 552

ISBN-13: 3662575507

DOWNLOAD EBOOK →

This book offers a comprehensive introduction to the theory of structural dynamics, highlighting practical issues and illustrating applications with a large number of worked out examples. In the spirit of “learning by doing” it encourages readers to apply immediately these methods by means of the software provided, allowing them to become familiar with the broad field of structural dynamics in the process. The book is primarily focused on practical applications. Earthquake resistant design is presented in a holistic manner, discussing both the underlying geophysical concepts and the latest engineering design methods and illustrated by fully worked out examples based on the newest structural codes. The spectral characteristics of turbulent wind processes and the main analysis methods in the field of structural oscillations due to wind gusts and vortex shedding are also discussed and applications illustrated by realistic examples of slender chimney structures. The user‐friendly software employed is downloadable and can be readily used by readers to tackle their own problems.

Seismic Analysis of Structures

Seismic Analysis of Structures PDF

Author: T. K. Datta

Publisher: John Wiley & Sons

Published: 2010-03-16

Total Pages: 472

ISBN-13: 047082462X

DOWNLOAD EBOOK →

While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic

Design of Reinforced Concrete Buildings for Seismic Performance

Design of Reinforced Concrete Buildings for Seismic Performance PDF

Author: Mark Aschheim

Publisher: CRC Press

Published: 2019-04-05

Total Pages: 622

ISBN-13: 1315354810

DOWNLOAD EBOOK →

The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Basics of Structural Dynamics and Aseismic Design

Basics of Structural Dynamics and Aseismic Design PDF

Author: Damodarasamy & Kavitha

Publisher: PHI Learning Pvt. Ltd.

Published: 2009-12-30

Total Pages: 334

ISBN-13: 812033843X

DOWNLOAD EBOOK →

Covers the four major areas of earthquake engineering - Structural Dynamics, Seismology, Seismic Analysis, and Aseismic Design. The text explores design philosophy, capacity design and codal provisions. It also provides detailed information on liquefaction of soil and effects of soil properties on response spectra.