Introduction to Aircraft Structural Analysis

Introduction to Aircraft Structural Analysis PDF

Author: T.H.G. Megson

Publisher: Butterworth-Heinemann

Published: 2010-01-16

Total Pages: 645

ISBN-13: 1856179338

DOWNLOAD EBOOK →

Introduction to Aircraft Structural Analysis is an essential resource for learning aircraft structural analysis. Based on the author's best-selling book Aircraft Structures for Engineering Students, this brief text introduces the reader to the basics of structural analysis as applied to aircraft structures. Coverage of elasticity, energy methods and virtual work sets the stage for discussions of airworthiness/airframe loads and stress analysis of aircraft components. Numerous worked examples, illustrations, and sample problems show how to apply the concepts to realistic situations. The book covers the core concepts in about 200 fewer pages by removing some optional topics like structural vibrations and aero elasticity. It consists of 23 chapters covering a variety of topics from basic elasticity to torsion of solid sections; energy methods; matrix methods; bending of thin plates; structural components of aircraft; airworthiness; airframe loads; bending of open, closed, and thin walled beams; combined open and closed section beams; wing spars and box beams; and fuselage frames and wing ribs. This book will appeal to undergraduate and postgraduate students of aerospace and aeronautical engineering, as well as professional development and training courses. Based on the author's best-selling text Aircraft Structures for Engineering Students, this Intro version covers the core concepts in about 200 fewer pages by removing some optional topics like structural vibrations and aeroelasticity Systematic step by step procedures in the worked examples Self-contained, with complete derivations for key equations

Advanced Aircraft Design

Advanced Aircraft Design PDF

Author: Egbert Torenbeek

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 412

ISBN-13: 1118568095

DOWNLOAD EBOOK →

Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.

Aircraft Structures for Engineering Students

Aircraft Structures for Engineering Students PDF

Author: T.H.G. Megson

Publisher: Butterworth-Heinemann

Published: 2021-08-11

Total Pages: 962

ISBN-13: 0323902111

DOWNLOAD EBOOK →

Aircraft Structures for Engineering Students, Seventh Edition, is the leading self-contained aircraft structures course text suitable for one or more semesters. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its seventh edition, the author has continued to expand the book’s coverage of analysis and design of composite materials for use in aircraft and has added more real-world and design-based examples, along with new end-of-chapter problems of varying complexity. Retains its hallmark comprehensive coverage of aircraft structural analysis New practical and design-based examples and problems throughout the text aid understanding and relate concepts to real world applications Updated and additional Matlab examples and exercises support use of computational tools in analysis and design Available online teaching and learning tools include downloadable Matlab code, solutions manual, and image bank of figures from the book

Aircraft Structures for Engineering Students

Aircraft Structures for Engineering Students PDF

Author: Thomas Henry Gordon Megson

Publisher: Hodder Education

Published: 1990

Total Pages: 0

ISBN-13: 9780713136814

DOWNLOAD EBOOK →

This book provides a self-contained course in aircraft structures which contains not only the fundamentals of elasticity and aircraft structural analysis but also the associated topics of airworthiness and aeroelasticity.