Stellar Evolution, Stellar Explosions, and Galactic Chemical Evolution, Proceedings of the Second Oak Ridge Symposium on Atomic and Nuclear Astrophysics, Oak Ridge, Tennessee, 2-6 December 1997

Stellar Evolution, Stellar Explosions, and Galactic Chemical Evolution, Proceedings of the Second Oak Ridge Symposium on Atomic and Nuclear Astrophysics, Oak Ridge, Tennessee, 2-6 December 1997 PDF

Author: Mezzacappa

Publisher: CRC Press

Published: 1998-01-01

Total Pages: 768

ISBN-13: 9780750305556

DOWNLOAD EBOOK →

Bringing together atomic physicists, nuclear physicists, astronomers, and astrophysicists from around the world, Stellar Evolution, Stellar Explosions, and Galactic Chemical Evolution focuses on stellar atmospheres; stellar evolution; stellar explosions, such as novae, supernovae, and x-ray bursters; pregalactic and galactic chemical evolution; the interstellar medium; and atomic and nuclear data for astrophysics. Consisting of invited papers, invited posters, and contributed posters, this volume covers observations, modeling, and atomic and nuclear physics foundations, including data, experiments, and theories, that are essential to understanding these important astrophysical objects and events. It documents a confluence of atomic physics, nuclear physics, and astrophysics and a confluence of data from atomic and nuclear physics experiments from current-generation astronomical instruments-all have helped advance the frontier in our understanding of the universe.

Nuclear Physics

Nuclear Physics PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2013-02-25

Total Pages: 263

ISBN-13: 0309260434

DOWNLOAD EBOOK →

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.

Software Engineering for Science

Software Engineering for Science PDF

Author: Jeffrey C. Carver

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 311

ISBN-13: 1498743862

DOWNLOAD EBOOK →

Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.