Statistical Methods for Astronomical Data Analysis

Statistical Methods for Astronomical Data Analysis PDF

Author: Asis Kumar Chattopadhyay

Publisher: Springer

Published: 2014-10-01

Total Pages: 356

ISBN-13: 149391507X

DOWNLOAD EBOOK →

This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.

Statistics, Data Mining, and Machine Learning in Astronomy

Statistics, Data Mining, and Machine Learning in Astronomy PDF

Author: Željko Ivezić

Publisher: Princeton University Press

Published: 2014-01-12

Total Pages: 550

ISBN-13: 0691151687

DOWNLOAD EBOOK →

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Astrostatistics

Astrostatistics PDF

Author: Gutti Jogesh Babu

Publisher: CRC Press

Published: 1996-08-01

Total Pages: 242

ISBN-13: 9780412983917

DOWNLOAD EBOOK →

Modern astronomers encounter a vast range of challenging statistical problems, yet few are familiar with the wealth of techniques developed by statisticians. Conversely, few statisticians deal with the compelling problems confronted in astronomy. Astrostatistics bridges this gap. Authored by a statistician-astronomer team, it provides professionals and advanced students in both fields with exposure to issues of mutual interest. In the first half of the book the authors introduce statisticians to stellar, galactic, and cosmological astronomy and discuss the complex character of astronomical data. For astronomers, they introduce the statistical principles of nonparametrics, multivariate analysis, time series analysis, density estimation, and resampling methods. The second half of the book is organized by statistical topic. Each chapter contains examples of problems encountered astronomical research and highlights methodological issues. The final chapter explores some controversial issues in astronomy that have a strong statistical component. The authors provide an extensive bibliography and references to software for implementing statistical methods. The "marriage" of astronomy and statistics is a natural one and benefits both disciplines. Astronomers need the tools and methods of statistics to interpret the vast amount of data they generate, and the issues related to astronomical data pose intriguing challenges for statisticians. Astrostatistics paves the way to improved statistical analysis of astronomical data and provides a common ground for future collaboration between the two fields.

Elements of Statistical Mechanics

Elements of Statistical Mechanics PDF

Author: Ivo Sachs

Publisher: Cambridge University Press

Published: 2006-05-11

Total Pages: 347

ISBN-13: 1139452460

DOWNLOAD EBOOK →

This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics.

Statistics for Astrophysics

Statistics for Astrophysics PDF

Author: Jean-Baptiste Marquette

Publisher: EDP Sciences

Published: 2019-09-19

Total Pages: 140

ISBN-13: 2759822753

DOWNLOAD EBOOK →

This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering.

Astrostatistics and Data Mining

Astrostatistics and Data Mining PDF

Author: Luis Manuel Sarro

Publisher: Springer Science & Business Media

Published: 2012-08-04

Total Pages: 259

ISBN-13: 1461433231

DOWNLOAD EBOOK →

​​​​​ ​This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The technical aspects related to the scientific analysis of the upcoming petabyte-scale databases are emphasized given the importance that scalable Knowledge Discovery techniques will have for the full exploitation of these databases. Based on the 2011 Astrostatistics and Data Mining in Large Astronomical Databases conference and school, this volume gathers examples of the work by leading authors in the areas of Astrophysics and Statistics, including a significant contribution from the various teams that prepared for the processing and analysis of the Gaia data.

Self-Organized Criticality in Astrophysics

Self-Organized Criticality in Astrophysics PDF

Author: Markus Aschwanden

Publisher: Springer Science & Business Media

Published: 2011-01-11

Total Pages: 416

ISBN-13: 3642150012

DOWNLOAD EBOOK →

Markus Aschwanden introduces the concept of self-organized criticality (SOC) and shows that due to its universality and ubiquity it is a law of nature for which he derives the theoretical framework and specific physical models in this book. He begins by providing an overview of the many diverse phenomena in nature which may be attributed to SOC behaviour. The author then introduces the classic lattice-based SOC models that may be explored using numerical computer simulations. These simulations require an in-depth knowledge of a wide range of mathematical techniques which the author introduces and describes in subsequent chapters. These include the statistics of random processes, time series analysis, time scale distributions, and waiting time distributions. Such mathematical techniques are needed to model and understand the power-law-like occurrence frequency distributions of SOC phenomena. Finally, the author discusses fractal geometry and scaling laws before looking at a range of physical SOC models which may be applicable in various aspects of astrophysics. Problems, solutions and a glossary will enhance the pedagogical usefulness of the book. SOC has been receiving growing attention in the astrophysical and solar physics community. This book will be welcomed by students and researchers studying complex critical phenomena.

Astrostatistical Challenges for the New Astronomy

Astrostatistical Challenges for the New Astronomy PDF

Author: Joseph M. Hilbe

Publisher: Springer Science & Business Media

Published: 2012-11-07

Total Pages: 247

ISBN-13: 1461435080

DOWNLOAD EBOOK →

Astrostatistical Challenges for the New Astronomy presents a collection of monographs authored by several of the disciplines leading astrostatisticians, i.e. by researchers from the fields of statistics and astronomy-astrophysics, who work in the statistical analysis of astronomical and cosmological data. Eight of the ten monographs are enhancements of presentations given by the authors as invited or special topics in astrostatistics papers at the ISI World Statistics Congress (2011, Dublin, Ireland). The opening chapter, by the editor, was adapted from an invited seminar given at Los Alamos National Laboratory (2011) on the history and current state of the discipline; the second chapter by Thomas Loredo was adapted from his invited presentation at the Statistical Challenges in Modern Astronomy V conference (2011, Pennsylvania State University), presenting insights regarding frequentist and Bayesian methods of estimation in astrostatistical analysis. The remaining monographs are research papers discussing various topics in astrostatistics. The monographs provide the reader with an excellent overview of the current state astrostatistical research, and offer guidelines as to subjects of future research. Lead authors for each chapter respectively include Joseph M. Hilbe (Jet Propulsion Laboratory and Arizona State Univ); Thomas J. Loredo (Dept of Astronomy, Cornell Univ); Stefano Andreon (INAF-Osservatorio Astronomico di Brera, Italy); Martin Kunz ( Institute for Theoretical Physics, Univ of Geneva, Switz); Benjamin Wandel ( Institut d'Astrophysique de Paris, Univ Pierre et Marie Curie, France); Roberto Trotta (Astrophysics Group, Dept of Physics, Imperial College London, UK); Phillip Gregory (Dept of Astronomy, Univ of British Columbia, Canada); Marc Henrion (Dept of Mathematics, Imperial College, London, UK); Asis Kumar Chattopadhyay (Dept of Statistics, Univ of Calcutta, India); Marisa March (Astrophysics Group, Dept of Physics, Imperial College, London, UK)./body

Big Data in Astronomy

Big Data in Astronomy PDF

Author: Linghe Kong

Publisher: Elsevier

Published: 2020-06-13

Total Pages: 440

ISBN-13: 012819085X

DOWNLOAD EBOOK →

Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world’s largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy. Bridges the gap between radio astronomy and computer science Includes coverage of the observation lifecycle as well as data collection, processing and analysis Presents state-of-the-art research and techniques in big data related to radio astronomy Utilizes real-world examples, such as Square Kilometer Array (SKA) and Five-hundred-meter Aperture Spherical radio Telescope (FAST)