Statistical Mechanics and the Theory of Dynamical Systems

Statistical Mechanics and the Theory of Dynamical Systems PDF

Author: Nikolaĭ Nikolaevich Bogoli͡ubov

Publisher: American Mathematical Soc.

Published: 1992

Total Pages: 260

ISBN-13: 9780821831441

DOWNLOAD EBOOK →

This volume contains articles covering a wide range of current directions in modern statistical mechanics and dynamical systems theory. Scientists, researchers, and students working in mathematical physics and statistical mechanics will find this book of great interest. Among the topics covered are: phase transition problems, including superconductivity and superfluidity; methods of nonequilibrium statistical mechanics and fluctuation theory; quantum collective phenomena; superradiance; spin glasses; polaron problems; chains of Bogolyubov equations and kinetic equations; algebraic aspects of quantum-dynamical semigroups; the collective variables method; and qualitative properties of classical dynamical systems."

Dynamical Systems and Statistical Mechanics

Dynamical Systems and Statistical Mechanics PDF

Author: I͡Akov Grigorʹevich Sinaĭ

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 266

ISBN-13: 9780821841020

DOWNLOAD EBOOK →

Dynamical systems and statistical mechanics have been developing in close interaction during the past decade, and the papers in this book attest to the productiveness of this interaction. The first paper in the collection contains a new result in the theory of quantum chaos, a burgeoning line of inquiry which combines mathematics and physics and which is likely in time to produce many new connections and applications. Another paper, related to the renormalization group method for the study of maps of the circle with singularities due to a jump in the derivative, demonstrates that the fixed point of the renormgroup can in this case be sufficiently described. In certain situations, the renormgroup methods work better than the traditional KAM method. Other topics covered include: thermodynamic formalism for certain infinite-dimensional dynamical systems, numerical simulation of dynamical systems with hyperbolic behaviour, periodic points of holomorphic maps, the theory of random media, statistical properties of the leading eigenvalue in matrix ensembles of large dimension, spectral properties of the one-dimensional Schrodinger operator. This volume will appeal to many readers, as it covers a broad range of topics and presents a view of some of the frontier research in the Soviet Union today.

Structure of Dynamical Systems

Structure of Dynamical Systems PDF

Author: J.M. Souriau

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461202817

DOWNLOAD EBOOK →

The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.

Dynamical Systems, Ergodic Theory and Applications

Dynamical Systems, Ergodic Theory and Applications PDF

Author: L.A. Bunimovich

Publisher: Springer Science & Business Media

Published: 2000-04-05

Total Pages: 476

ISBN-13: 9783540663164

DOWNLOAD EBOOK →

This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.

Extremes and Recurrence in Dynamical Systems

Extremes and Recurrence in Dynamical Systems PDF

Author: Valerio Lucarini

Publisher: John Wiley & Sons

Published: 2016-03-28

Total Pages: 312

ISBN-13: 1118632354

DOWNLOAD EBOOK →

Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.

A Dynamical Systems Theory of Thermodynamics

A Dynamical Systems Theory of Thermodynamics PDF

Author: Wassim M. Haddad

Publisher: Princeton University Press

Published: 2019-06-04

Total Pages: 744

ISBN-13: 0691190143

DOWNLOAD EBOOK →

A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics. This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics. A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory. The book establishes a clear nexus between thermodynamic irreversibility, the second law of thermodynamics, and the arrow of time to further unify discreteness and continuity, indeterminism and determinism, and quantum mechanics and general relativity in the pursuit of understanding the most fundamental property of the universe—the entropic arrow of time.