Standard Electrical Power Systems for Unmanned Spacecraft

Standard Electrical Power Systems for Unmanned Spacecraft PDF

Author: American Institute of Aeronautics and Astronautics

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Published: 2007

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK →

This document, when followed in its entirety, will yield a robust EPS design suitable for very high-reliability space missions. This document specifies general design practices and sets minimum verification and validation requirements for power systems of unmanned spacecraft. The focus of the document is on earth orbiting satellites using traditional photovoltaic/battery power, but does not exclude other primary power generation and storage methods. This document does not address specific launch vehicle requirements however much of the design philosophy used here is applicable to launch vehicle power systems.

Spacecraft Power Systems

Spacecraft Power Systems PDF

Author: Mukund R. Patel

Publisher: CRC Press

Published: 2023-12-12

Total Pages: 363

ISBN-13: 1003804217

DOWNLOAD EBOOK →

This second edition of Spacecraft Power Systems is a comprehensive coverage of the fundamentals, design trades, components, controls, and operations of spacecraft power systems based on the real-world design and operations of spacecraft that have successfully flown for decades. It also includes emerging high-voltage, high-power systems for in-space propulsion for interplanetary travel. With new and updated chapters, sections, and discussions, the second edition covers up-to-date high-voltage, MW-scale electric propulsion, updated PV and battery systems, spacecraft power components, power electronics, and their architectures and operations. This book also presents the latest in spacecraft design processes and trades, controls, operations, and protection. This book is intended for senior undergraduate and graduate students in mechanical, aerospace, and electrical engineering taking courses in Space Systems, Space Engineering, and Spacecraft Power Systems, as well as for practicing aerospace and power engineers and managers who are designing, developing, and operating spacecraft power systems.

Spacecraft Power System Technologies

Spacecraft Power System Technologies PDF

Author: Qi Chen

Publisher: Springer Nature

Published: 2020-08-14

Total Pages: 321

ISBN-13: 9811548390

DOWNLOAD EBOOK →

This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China’s spacecraft engineering projects. The book’s closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.

Spacecraft Lithium-Ion Battery Power Systems

Spacecraft Lithium-Ion Battery Power Systems PDF

Author: Thomas P. Barrera

Publisher: John Wiley & Sons

Published: 2023-01-24

Total Pages: 341

ISBN-13: 1119772141

DOWNLOAD EBOOK →

Spacecraft Lithium-Ion Battery Power Systems Helps Readers Better Understand the Design, Development, Test, and Safety Engineering of Spacecraft Lithium-Ion Battery Power Systems Written by highly experienced spacecraft engineers and scientists working at the heart of the industry, Spacecraft Lithium-Ion Battery Power Systems is one of the first books to provide a comprehensive treatment of the broad area of spacecraft battery power systems technology. The work emphasizes the technical aspects across the entire lifecycle of spacecraft batteries including the requirements, design, manufacturing, testing, and safety engineering principles needed to field a reliable spacecraft electrical power system. A special focus on rechargeable lithium-ion battery technologies as they apply to manned and unmanned Earth-orbiting satellites, Cubesats, planetary mission spacecraft (such as orbiters, landers, rovers, and probes), and launch vehicle applications is emphasized. Using a systems engineering approach, the book smoothly bridges knowledge gaps that typically exist between academic and industry practitioners. Sample topics of discussion and learning resources included in the work include: Detailed systematic technical treatment of spacecraft LIB power systems across the entire lithium-ion battery life cycle Principles of lithium-ion cell and battery design, battery management systems, electrical power systems, safety engineering, life cycle testing, ground processing, and on-orbit mission operations Special topics such as requirements engineering, qualification testing, safety hazards and controls, reliability analysis, life modeling and prediction, on-orbit battery power system management, and decommissioning strategies New and emerging on-orbit space applications of LIBs supporting commercial, civil, and government spacecraft missions (International Space Station, Galileo, James Webb Telescope, Mars 2020 Perseverance Rover, Europa Clipper) Real space industry case studies of deployed Earth-orbiting satellite, astronaut, and planetary mission spacecraft lithium-ion batteries Overall, the work provides professionals supporting the commercial, civil, and government aerospace marketplace with key knowledge and highly actionable information pertaining to lithium-ion batteries and their specific applications in modern spacecraft systems.

Spacecraft Power Technologies

Spacecraft Power Technologies PDF

Author:

Publisher: World Scientific Publishing Company

Published: 2000-01-01

Total Pages: 476

ISBN-13: 9781860941177

DOWNLOAD EBOOK →

Spacecraft Power Technologies is the first comprehensive text devoted to the technologies critical to the development of spacecraft electrical power systems. The science and engineering of solar, chemical, and nuclear systems are fully examined together with the constraints imposed by the space and thermal environments in which the systems must operate. Details of present technology and the history that led to the current state-of-the-art are presented at a level appropriate for the student as a textbook or the practicing engineer as a reference.

Spacecraft Lithium-Ion Battery Power Systems

Spacecraft Lithium-Ion Battery Power Systems PDF

Author: Thomas P. Barrera

Publisher: John Wiley & Sons

Published: 2022-11-18

Total Pages: 341

ISBN-13: 1119772168

DOWNLOAD EBOOK →

Spacecraft Lithium-Ion Battery Power Systems Provides Readers with a Better Understanding of the Requirements, Design, Test, and Safety Engineering of Spacecraft Lithium-ion Battery Power Systems Written by highly experienced spacecraft engineers and scientists working at the forefront of the aerospace industry, Spacecraft Lithium-Ion Battery Power Systems is one of the first books to provide a comprehensive treatment of the broad area of spacecraft lithium-ion battery (LIB) power systems technology. The work emphasizes the technical aspects across the entire lifecycle of spacecraft LIBs including the requirements, design, manufacturing, testing, and safety engineering principles needed to deploy a reliable spacecraft LIB-based electrical power system. A special focus on rechargeable LIB technologies as they apply to unmanned and crewed Earth-orbiting satellites, planetary mission spacecraft (such as orbiters, landers, rovers and probes), launch vehicle, and astronaut spacesuit applications is emphasized. Using a system’s engineering approach, the book bridges knowledge gaps that typically exist between academic and industry practitioners. Key topics of discussion and learning resources include: Detailed systematic technical treatment of spacecraft LIB-based electrical power systems across the entire LIB lifecycle Principles of lithium-ion cell and battery design and test, LIB sizing, battery management systems, electrical power systems, safety engineering, ground and launch-site processing, and on-orbit mission operations Special topics such as requirements engineering, qualification testing, thermal runaway hazards, dead bus events, life cycle testing and prediction analyses, on-orbit LIB power system management, and spacecraft EPS passivation strategies Comprehensive discussion of on-orbit and emerging space applications of LIBs supporting various commercial, civil, and government spacecraft missions such as International Space Station, Galileo, James Webb Telescope, Mars 2020 Perseverance Rover, Europa Clipper, Cubesats, and more Overall, the work provides professionals supporting all aspects of the aerospace marketplace with key knowledge and highly actionable information pertaining to LIBs and their specific applications in modern spacecraft systems.

Identification of High Performance and Component Technology for Space Electrical Power Systems for Use Beyond the Year 2000

Identification of High Performance and Component Technology for Space Electrical Power Systems for Use Beyond the Year 2000 PDF

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-25

Total Pages: 228

ISBN-13: 9781724243959

DOWNLOAD EBOOK →

Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power. Maisel, James E. Unspecified Center NASA-CR-183003, NAS 1.26:183003 NAG3-714...

Space Nuclear Fission Electric Power Systems

Space Nuclear Fission Electric Power Systems PDF

Author: David Buden

Publisher:

Published: 2011

Total Pages: 277

ISBN-13: 9780974144344

DOWNLOAD EBOOK →

The advantages of space nuclear fission power systems can be summarized as: compact size; low to moderate mass; long operating lifetimes; the ability to operate in extremely hostile environments; operation independent of the distance from the Sun or of the orientation to the Sun; and high system reliability and autonomy. In fact, as power requirements approach the tens of kilowatts and megawatts, fission nuclear energy appears to be the only realistic power option. The building blocks for space nuclear fission electric power systems include the reactor as the heat source, power generation equipment to convert the thermal energy to electrical power, waste heat rejection radiators and shielding to protect the spacecraft payload. The power generation equipment can take the form of either static electrical conversion elements that have no moving parts (e.g., thermoelectric or thermionic) or dynamic conversion components (e.g., the Rankine, Brayton or Stirling cycle). The U.S. has only demonstrated in space, or even in full systems in a simulated ground environment, uranium-zirconium-hydride reactor power plants. These power plants were designed for a limited lifetime of one year and the mass of scaled up power plants would probably be unacceptable to meet future mission needs. Extensive development was performed on the liquid-metal cooled SP-100 power systems and components were well on their way to being tested in a relevant environment. A generic flight system design was completed for a seven year operating lifetime power plant, but not built or tested. The former USSR made extensive use of space reactors as a power source for radar ocean reconnaissance satellites. They launched some 31 missions using reactors with thermoelectric power conversion systems and two with thermionic converters. Current activities are centered on Fission Surface Power for lunar applications. Activities are concentrating on demonstrating component readiness. This book will discuss the components that make up a nuclear fission power system, the principal requirements and safety issues, various development programs, status of developments, and development issues.