Spin-Crossover Materials

Spin-Crossover Materials PDF

Author: Malcolm A. Halcrow

Publisher: John Wiley & Sons

Published: 2013-01-07

Total Pages: 729

ISBN-13: 1118519310

DOWNLOAD EBOOK →

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

Spin Crossover in Transition Metal Compounds III

Spin Crossover in Transition Metal Compounds III PDF

Author: Philipp Gütlich

Publisher: Springer Science & Business Media

Published: 2004-08-17

Total Pages: 294

ISBN-13: 9783540403951

DOWNLOAD EBOOK →

C. Brady, J.J. McGarvey, J.K. McCusker, H. Toftlund, D.N. Hendrickson: Time-Resolved Relaxation Studies of Spin Crossover Systems in Solution.- V. Ksenofontov, P. Gütlich et al.: Spin Crossover under Pressure.- A. Bousseksou, F. Varret, M. Goiran, K. Boukheddaden, J.P. Tuchagues: The Spin Crossover Phenomenon under High Magnetic Field.- J.-P. Tuchagues, A. Bousseksou, G. Molnár, J.J. McGarvey, F. Varret: The Role of Molecular Vibrations in the Spin Crossover Phenomenon.- W. Linert, M. Grunert, A.B. Koudriavtsev: Isokinetic and Isoequilibrium Relationships in Spin Crossover Systems.- H. Winkler, A.I: Chumakov, A.X. Trautwein: Nuclear Resonant Forward and Nuclear Inelastic Scattering Using Synchrotron Radiation for Spin Crossover Systems.- M. Sorai: Heat Capacity Studies of Spin Crossover Systems.- H. Spiering et al.: Cooperative Elastic Interactions in Spin Crossover Systems.- H. Paulsen, A.X. Trautwein: Density Functional Theory Calculations for Spin Crossover Complexes.- J.-F. Létard, P. Guionneau, L. Goux-Capes: Towards Spin Crossover Applications.

Spin-Crossover Complexes

Spin-Crossover Complexes PDF

Author: Kazuyuki Takahashi MDPI

Publisher: MDPI

Published: 2018-06-26

Total Pages: 207

ISBN-13: 3038428256

DOWNLOAD EBOOK →

This book is a printed edition of the Special Issue "Spin-Crossover Complexes" that was published in Inorganics

Functional Molecular Materials

Functional Molecular Materials PDF

Author: Matteo Atzori

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 372

ISBN-13: 1351233645

DOWNLOAD EBOOK →

The field of molecular materials represents an exciting playground for the design, tailoring, and combination of chemical building blocks as carriers of physical properties and aims at the understanding and development of novel functional molecular devices. Within this extraordinarily widespread framework, the realization of materials with the desired functionalities can only be achieved through a rational design strategy based on a solid understanding of the chemical and physical features of each constituting building block. This book provides a general overview of molecular materials, discussing their key features in a simple and organic way by focusing more on basic concepts rather than on specialized descriptions, in order to supply the non-expert reader with the immediate fundamental tools and hints to understand and develop research in this field. With this view, it is a step-by-step guide toward the preparation of functional molecular materials, where the knowledge and understanding so far attained by the scientific community through the investigation of significant archetypical examples is deconstructed down to the fundamental basis and then presented in reverse, from the base to the top.

A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1 PDF

Author: Mandeep Dalal

Publisher: Dalal Institute

Published: 2017-01-01

Total Pages: 480

ISBN-13: 8193872002

DOWNLOAD EBOOK →

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory, dπ -pπ bonds, Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions, Trends in stepwise constants, Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand, Chelate effect and its thermodynamic origin, Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes, Mechanisms for ligand replacement reactions, Formation of complexes from aquo ions, Ligand displacement reactions in octahedral complexes- acid hydrolysis, Base hydrolysis, Racemization of tris chelate complexes, Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes, The trans effect, Theories of trans effect, Mechanism of electron transfer reactions – types; Outer sphere electron transfer mechanism and inner sphere electron transfer mechanism, Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory, Molecular orbital theory, octahedral, tetrahedral or square planar complexes, π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals, Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states), Calculation of Dq, B and β parameters, Effect of distortion on the d-orbital energy levels, Structural evidence from electronic spectrum, John-Tellar effect, Spectrochemical and nephalauxetic series, Charge transfer spectra, Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry, Guoy’s method for determination of magnetic susceptibility, Calculation of magnetic moments, Magnetic properties of free ions, Orbital contribution, effect of ligand-field, Application of magneto-chemistry in structure determination, Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes, Wade’s rules, Carboranes, Metal Carbonyl Clusters - Low Nuclearity Carbonyl Clusters, Total Electron Count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls, structure and bonding, Vibrational spectra of metal carbonyls for bonding and structure elucidation, Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.

Molecular Magnetic Materials

Molecular Magnetic Materials PDF

Author: Barbara Sieklucka

Publisher: John Wiley & Sons

Published: 2017-01-17

Total Pages: 508

ISBN-13: 3527339531

DOWNLOAD EBOOK →

A comprehensive overview of this rapidly expanding interdisciplinary field of research. After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets. The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.

Essentials of Inorganic Materials Synthesis

Essentials of Inorganic Materials Synthesis PDF

Author: C. N. R. Rao

Publisher: John Wiley & Sons

Published: 2015-04-06

Total Pages: 231

ISBN-13: 111883254X

DOWNLOAD EBOOK →

This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

Functional Metallosupramolecular Materials

Functional Metallosupramolecular Materials PDF

Author: John Hardy

Publisher: Royal Society of Chemistry

Published: 2015-07-17

Total Pages: 416

ISBN-13: 1782620222

DOWNLOAD EBOOK →

There is great interest in metallosupramolecular materials because of their use in magnetic, photonic and electronic materials. Functional Metallosupramolecular Materials focuses on the applications of these materials covering the chemistry underlying the synthesis of a variety of ligands to coordinate various metal ions and the generation of 2D and 3D materials based on these constructs. The book starts by looking at different metallosupramolecular systems including naturally occurring functional metallosupramolecular materials; DNA-based metallosupramolecular materials; metallopolymers; metallogels as well as functional materials based on MOFs. Subsequent chapters then systematically cover the different applications such as molecular computation, spin-crossover, light harvesting and as photocatalysts for the production of solar fuels. The book provides an overview of functional metallosupramolecular materials that will be of interest to graduate students, academics and industrial chemists interested in supramolecular chemistry, materials science and the materials applications. Priced at £159.00, US$260.00, €198.75