Sound Transmission Through a Fluctuating Ocean

Sound Transmission Through a Fluctuating Ocean PDF

Author: Roger Dashen

Publisher: Cambridge University Press

Published: 2010-06-10

Total Pages: 328

ISBN-13: 9780521142458

DOWNLOAD EBOOK →

This 1979 book attempts to connect the known structure of the ocean volume with experimental results in long-range sound transmission through the theory of wave propagation and the path-integral approach. The book is written at the post-graduate level, but has been carefully organised to give experimenters a grasp of important results without undue mathematics.

Sound Transmission Through a Fluctuating Ocean: a Modal Approach

Sound Transmission Through a Fluctuating Ocean: a Modal Approach PDF

Author: Ilya A. Udovydchenkov

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Sound transmission through a fluctuating deep ocean environment is considered. It is assumed that the environment consists of a range-independent background, on which a small-scale perturbation, due for example to internal waves, is superimposed. The modal description of underwater sound propagation is used extensively. The temporal spread of modal group arrivals in weakly range-dependent deep ocean environments is considered. The phrase 3modal group arrival4 refers to the contribution to a transient wavefield corresponding to a fixed mode number. It is shown that there are three contributions to modal group time spreads which combine approximately in quadrature. These are the reciprocal bandwidth, a deterministic dispersive contribution, and a scattering-induced contribution. The latter two contributions are shown to be proportional to the waveguide invariant beta, a property of the background sound speed profile. The results presented are based mostly on asymptotic theory. Some extensions of the asymptotic modal theory are developed. These theoretical results are shown to agree well with full-wave numerical wavefield simulations and available exact mode theoretical results. Theoretical predictions of modal group time spreads are compared to estimates derived from data that was collected during the 2004 LOAPEX experiment. The effects of deficiencies in the receiving array on estimates of modal group time spreads are discussed. It is shown that in spite of array deficiencies in the LOAPEX measurements it is possible to estimate modal group time spreads for almost all propagating modes and these estimates agree well with results obtained from numerical simulations and the developed theory. The effect of ocean internal waves on sound speed fluctuations is also considered, motivated by the observation that the amount of energy being scattered along the propagation path is sometimes greater in the experimental data than predicted by numerical simulations and theory. It is shown that the usual assumption that the potential sound speed gradient is proportional to the squared buoyancy frequency is often not a good approximation.

Sound Propagation through the Stochastic Ocean

Sound Propagation through the Stochastic Ocean PDF

Author: John A. Colosi

Publisher: Cambridge University Press

Published: 2016-06-20

Total Pages: 443

ISBN-13: 1316684032

DOWNLOAD EBOOK →

The ocean is opaque to electromagnetic radiation and transparent to low frequency sound, so acoustical methodologies are an important tool for sensing the undersea world. Stochastic sound-speed fluctuations in the ocean, such as those caused by internal waves, result in a progressive randomisation of acoustic signals as they traverse the ocean environment. This signal randomisation imposes a limit to the effectiveness of ocean acoustic remote sensing, navigation and communication. Sound Propagation through the Stochastic Ocean provides a comprehensive treatment of developments in the field of statistical ocean acoustics over the last 35 years. This will be of fundamental interest to oceanographers, marine biologists, geophysicists, engineers, applied mathematicians, and physicists. Key discoveries in topics such as internal waves, ray chaos, Feynman path integrals, and mode transport theory are addressed with illustrations from ocean observations. The topics are presented at an approachable level for advanced students and seasoned researchers alike.

Infrasound Propagation in an Anisotropic Fluctuating Atmosphere

Infrasound Propagation in an Anisotropic Fluctuating Atmosphere PDF

Author: Igor Chunchuzov

Publisher: Cambridge Scholars Publishing

Published: 2020-02-28

Total Pages: 355

ISBN-13: 1527547760

DOWNLOAD EBOOK →

This book presents the theory and results of experimental studies of the propagation of infrasound waves in a real atmosphere with its inherent fine-scale layered structure of wind speed and temperature. It is motivated by the fact that the statistical characteristics of anisotropic (or layered) fluctuations of meteorological fields, the horizontal scales of which significantly exceed their vertical scales, have been very poorly studied compared to those of locally isotropic turbulence in the inertial range of scales. This book addresses this lacuna by developing a theory of the formation of anisotropic inhomogeneities of the atmosphere in a random field of internal gravity waves and vortex structures. Using theory, it explains numerous experimental data depicting the influence of the fine structure of the atmosphere on the propagation of infrasound waves from pulsed sources. The text will appeal to specialists in the fields of acoustics and optics of the atmosphere, remote sensing of the atmosphere, the dynamics of internal waves, nonlinear acoustics, and infrasound monitoring of explosions and natural hazards.

Ocean Variability & Acoustic Propagation

Ocean Variability & Acoustic Propagation PDF

Author: J. Potter

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 599

ISBN-13: 9401133123

DOWNLOAD EBOOK →

Fifteen years ago NATO organised a conference entitled 'Ocean Acoustic Modelling'. Many of its participants were again present at this variability workshop. One such participant. in concluding his 1975 paper, quoted the following from a 1972 literature survey: ' ... history presents a sad lack of communications between acousticians and oceanographers' Have we done any better in the last 15 years? We believe so, but only moderately. There is still a massive underdeveloped potential for acousticians and oceanographers to make significant progress together. Currently, the two camps talk together insufficiently even to avoid simple misun derstandings. such as those in Table 1. Table 1 Ocsanographic and acoustic jargon (from an idea by Pol/ardi Jargon Oceanographic use Acoustic use dbordB decibar (depth in m) decibel (energy level) PE primitive equations parabolic equations convergence zone converging currents converging rays (downwelling water) (high energy density) front thermohaline front wave, ray or time front speed water current speed sound propagation speed 1 The list goes on.

Full Field Inversion Methods in Ocean and Seismo-Acoustics

Full Field Inversion Methods in Ocean and Seismo-Acoustics PDF

Author: Orest Diachok

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 424

ISBN-13: 9401584761

DOWNLOAD EBOOK →

Recent advances in the power of inversion methods, the accuracy of acoustic field prediction codes, and the speed of digital computers have made the full field inversion of ocean and seismic parameters on a large scale a practical possibility. These methods exploit amplitude and phase information detected on hydrophone/geophone arrays, thereby extending traditional inversion schemes based on time of flight measurements. Full field inversion methods provide environmental information by minimising the mismatch between measured and predicted acoustic fields through a global search of possible environmental parameters. Full Field Inversion Methods in Ocean and Seismo-Acoustics is the formal record of a conference held in Italy in June 1994, sponsored by NATO SACLANT Undersea Research Centre. It includes papers by NATO specialists and others. Topics covered include: · speed and accuracy of acoustic field prediction codes · signal processing strategies · global inversion algorithms · search spaces of environmental parameters · environmental stochastic limitations · special purpose computer architectures · measurement geometries · source and receiving sensor technologies.

Ocean Seismo-Acoustics

Ocean Seismo-Acoustics PDF

Author: T. Akal

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 898

ISBN-13: 1461322014

DOWNLOAD EBOOK →

Seafloor investigation has long been a feature of not only seismology but also of acoustics. Indeed it was acoustics that produced depth sounders, giving us the first capability of producing both global and local maps of the seafloor. Subsequently, better instrumentation and techniques led to a clearer, more quantitative picture of the seabed itself, which stimulated new hypotheses such as seafloor spreading through the availability of more reliable data on sediment thickness over ocean basins and other bottom features. Geologists and geophysicists have used both acoustic and seismic methods to study the seabed by considering the propagation of signals arising from both natural seismic events and man-made impulsive sources. Although significant advances have been made in instrumentation, such as long towed geophysical arrays, ai r guns and ocean bot tom seismometers, the pic ture of the seafloor is still far from complete. Underwater acoustics concerns itself today with the phenomena of propagation and noise at frequencies and ranges that require an understanding of acoustic interaction at both of its boundaries, the sea surface and seafloor, over depths ranging from tens to thousands of meters. Much of the earlier higher frequency (>1 kHz) work included the characterization of the seafloor in regimes of reflection coefficients which were empirically derived from surveys. The results of these studies met with only limited success, confined as they were to those areas where survey data existed and lacking a physical understanding of the processes of reflection and scattering.

Underwater Acoustic Modeling and Simulation

Underwater Acoustic Modeling and Simulation PDF

Author: Paul C. Etter

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 521

ISBN-13: 1466564946

DOWNLOAD EBOOK →

Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.