Somatic Hybridization in Crop Improvement I

Somatic Hybridization in Crop Improvement I PDF

Author: Y. P. S. Bajaj

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 548

ISBN-13: 3642579450

DOWNLOAD EBOOK →

Thirty-five chapters on various aspects of fusion of plant protoplasts and somatic hybridization deal with the regeneration of interspecific and intergeneric somatic hybrids and cybrids in various plants: cereals, grasses, legumes, potato, tomato, eggplant, lettuce, Brassica, Datura, Hyoscyamus, Nicotiana, Catharanthus, Rauwolfia, Citrus, Poncirus, Prunus, Pyrus, Populus, algae, bryophytes, and ferns. The implications of somatic hybridization in gene transfer in wide crosses and for the induction of genetic variability in various crops are discussed. The book is an invaluable source of information for advanced students, teachers, and research scientists in the field of plant breeding, genetic engineering, plant tissue culture, and general plant biotechnology.

Somatic Hybridization in Crop Improvement II

Somatic Hybridization in Crop Improvement II PDF

Author: Toshiyuki Nagata

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 390

ISBN-13: 3642567584

DOWNLOAD EBOOK →

This richly illustrated volume describes how somatic hybrids can contribute to the improvement of crops. It comprises 24 chapters dealing with interspecific and intergeneric somatic hybridization and cybridization, providing valuable tools for plant breeders.

Distant Hybridization of Crop Plants

Distant Hybridization of Crop Plants PDF

Author: G. Kalloo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 282

ISBN-13: 3642843069

DOWNLOAD EBOOK →

Wild taxa are invaluable sources of resistance to diseases, insects/ pests, nematodes, temperature extremes, salinity and alkalinity stresses, and also of nutritional quality; adaptation; genetic diversity and new species. Utilization of wild relatives of a crop depends largely upon its crossability relations with cultivated varieties. Sev eral wild species are not crossable with the commercial cultivars due to various isolation barriers. Furthermore, in a few cases, hybridiza tion is possible only in one direction and reciprocal crosses are not successful, thus depriving the utilization of desired cytoplasm of many species. However, techniques have been developed to over come many barriers and hybrid plants are produced. New crop species have been developed by overcoming the F 1 sterility and producing amphidiploids and such crops are commercially being grown in the field. The segregation pattern ofF 1 hybrids produced by distant hybridization in segregating generations are different from the intervarietal hybrids. In former cases, generally, unidirectional segregation takes place in early generations and accordingly, selec tion procedures are adopted. In most of the cases, backcross or modified backcross methods have been followed to utilize wild species, and thus numerous types of resistance and other economical attributes have been transferred in the recurrent parents. Protoplast fusion has been amply demonstrated in a number of cases where sexual hybridization was not possible and, as a result, hybrids have been produced.

Plant Cell Biotechnology

Plant Cell Biotechnology PDF

Author: M. Salome S. Pais

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 493

ISBN-13: 3642731570

DOWNLOAD EBOOK →

A number of interdisciplinary fields related to Plant Cell Biotechnology are discussed. The two main directions are: Plant cell culture in agricultural applications for the improvement of crops and industrial applications in the production of secondary metabolites. A number of areas such as physiological and biochemical aspects of autotrophic cells, gene characterization in higher plants, transformation of plant cells, genetic stability in plant cell cultures, somatic hybridization and somatic embryogenesis are treated. Recent knowledge on somaclonal and gametoclonal variation as well as on the obtainment of protoplasts and their use for the isolation and culture of heterocaryons as tools for plant breeding are considered. Furthermore, the knowledge on biomass production in fermentor conditions and the role of immobilization for increased production and scale-up of plant cells are discussed.

Molecular Biology and Biotechnology of Plant Organelles

Molecular Biology and Biotechnology of Plant Organelles PDF

Author: Henry Daniell, Ph.D.

Publisher: Springer Science & Business Media

Published: 2007-11-04

Total Pages: 671

ISBN-13: 1402031661

DOWNLOAD EBOOK →

We have taught plant molecular biology and biotechnology at the undergraduate and graduate level for over 20 years. In the past few decades, the field of plant organelle molecular biology and biotechnology has made immense strides. From the green revolution to golden rice, plant organelles have revolutionized agriculture. Given the exponential growth in research, the problem of finding appropriate textbooks for courses in plant biotechnology and molecular biology has become a major challenge. After years of handing out photocopies of various journal articles and reviews scattered through out the print and electronic media, a serendipitous meeting occurred at the 2002 IATPC World Congress held in Orlando, Florida. After my talk and evaluating several posters presented by investigators from my laboratory, Dr. Jacco Flipsen, Publishing Manager of Kluwer Publishers asked me whether I would consider editing a book on Plant Organelles. I accepted this challenge, after months of deliberations, primarily because I was unsuccessful in finding a text book in this area for many years. I signed the contract with Kluwer in March 2003 with a promise to deliver a camera-ready textbook on July 1, 2004. Given the short deadline and the complexity of the task, I quickly realized this task would need a co-editor. Dr. Christine Chase was the first scientist who came to my mind because of her expertise in plant mitochondria, and she readily agreed to work with me on this book.

Plant Improvement and Somatic Cell Genetics

Plant Improvement and Somatic Cell Genetics PDF

Author: Indra Asil

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 313

ISBN-13: 0323156509

DOWNLOAD EBOOK →

Plant Improvement and Somatic Cell Genetics includes all but one of the papers presented at two symposia held during the XIII International Botanical Congress in Sydney, Australia, on August 21-28, 1981. ""Frontiers in Plant Breeding"" and ""Cell Culture and Somatic Cell Genetics in Plant Biology"" highlight the ways in which plant breeding techniques can improve crops. The book explores the potentials as well as the limitations of plant breeding, and cellular and molecular techniques in plant improvement. Comprised of 14 chapters, this volume begins with an overview of the potential applications of exotic germplasm for tomato and cereal crop improvement. It continues with a discussion of multiline breeding, breeding of crop plants that can tolerate soil stresses, combining genomes by means of conventional methods, use of embryo culture in interspecific hybridization, use of haploids in plant improvement, and somaclonal variation and somatic hybridization as new techniques for plant improvement. The reader is also introduced to plant cell culture, as well as somatic cell genetics of cereals and grasses, somatic cell fusion for inducing cytoplasmic exchange, uses of cell culture mutants, genetic transformation of plant cells by experimental procedures in the context of plant genetic engineering, and use of molecular biology techniques for recognition and modification of crop plant genotypes. This book will be a useful resource for scientists and plant breeders interested in applying somatic cell genetics for crop improvement.

Somaclonal Variation and Induced Mutations in Crop Improvement

Somaclonal Variation and Induced Mutations in Crop Improvement PDF

Author: S.M. Jain

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 615

ISBN-13: 9401591253

DOWNLOAD EBOOK →

Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g. , ethyl methane sulphonate) have been widely used to induce mutations.